freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

八年級數(shù)學試卷易錯易錯壓軸勾股定理選擇題試題(含答案)-文庫吧資料

2025-04-01 22:15本頁面
  

【正文】 =6,則對角線BD的最小值是6;故選:D.【點睛】本題考查了平行四邊形的性質(zhì),利用待定系數(shù)法求一次函數(shù)的解析式,三角形相似的判定,圓形與坐標特點,.13.D解析:D【分析】先根據(jù)勾股定理求出梯子的長,進而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=+=,在Rt△ABC中,∵∠ABC=90176。由作圖可知OM垂直平分AE,∴OA=OE=3,∴∠OAE=∠OEA=45176。從而證明△BOE是直角三角形,然后設AB=x,則OB=3+x,根據(jù)周長最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.【詳解】解:作點A關(guān)于OM的對稱點E,AE交OM于點D,連接BE、OE,BE交OM于點C, 此時△ABC周長最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,∵△ABC周長的最小值是6,∴AB+BE=6,∵∠MON=45176?!唷螧CF=30176?!唷螧CF=30176。90176?!唷螩BF=180176?!唷螪BE=∠DAB=30176。得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出結(jié)果.【詳解】解:連接BD,作CF⊥AB于F,如圖所示:則∠BFC=90176。由直角三角形的性質(zhì)得出BD=AD=2DE=,AE=BE=DE=3,證出△BCD是直角三角形,∠CBD=90176。BE=B′E.∴∠BEB′=90176。=∠DEB,∴四邊形PDEB為矩形,∴AB∥OE,且O為AC中點,AB=6.∴PD=BE=EC.∴OE=AB=3.設PA=x,則OD=DEOE=6+x3=3+x=OC,EC=PD=6x..在Rt△OEC中:,即:,解得x=2.所以AC=2OC=2(3+x)=10.點睛:本題考查了切線的性質(zhì),相似三角形的性質(zhì),勾股定理.4.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.【詳解】解:∵正方形是軸對稱圖形,點B與點D是關(guān)于直線AC為對稱軸的對稱點,∴連接BN,BD,則直線AC即為BD的垂直平分線,∴BN=ND∴DN+MN=BN+MN連接BM交AC于點P,∵點 N為AC上的動點,由三角形兩邊和大于第三邊,知當點N運動到點P時,BN+MN=BP+PM=BM,BN+MN的最小值為BM的長度,∵四邊形ABCD為正方形,∴BC=CD=8,CM=8?2=6,BCM=90176。由勾股定理得CD′===6,故選A.【點睛】本題考查了全等三角形的判定與性質(zhì),利用了全等三角形的判定與性質(zhì),勾股定理,添加輔助線作出全等圖形是解題關(guān)鍵.3.C解析:C【解析】分析:通過切線的性質(zhì)表示出EC的長度,用相似三角形的性質(zhì)表示出OE的長度,由已知條件表示出OC的長度即可通過勾股定理求出結(jié)果.詳解:如圖:連接BC,并連接OD交BC于點E:∵DP⊥BP,AC為直徑;∴∠DPB=∠PBC=90176?!緟⒖即鸢浮?**試卷處理標記,請不要刪除一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.B解析:B【分析】結(jié)論①錯誤,因為圖中全等的三角形有3對;結(jié)論②正確,由全等三角形的性質(zhì)可以判斷;結(jié)論③錯誤,利用全等三角形和等腰直角三角形的性質(zhì)可以判斷;結(jié)論④正確,利用全等三角形的性質(zhì)以及直角三角形的勾股定理進行判斷.【詳解】連接CF,交DE于點P,如下圖所示結(jié)論①錯誤,理由如下:圖中全等的三角形有3對,分別為△AFC≌△BFC,△AFD≌△CFE,△CFD≌△BFE.由等腰直角三角形的性質(zhì),可知FA=FC=FB,易得△AFC≌△BFC.∵FC⊥AB,F(xiàn)D⊥FE,∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可證:△CFD≌△BFE.結(jié)論②正確,理由如下: ∵△AFD≌△CFE,∴S△AFD=S△CFE, ∴S四邊形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=S△ABC,即△ABC的面積等于四邊形CDFE的面積的2倍.結(jié)論③錯誤,理由如下: ∵△AFD≌△CFE,∴CE=AD,∴CD+CE=CD+AD=AC=FA.結(jié)論④正確,理由如下: ∵△AFD≌△CFE,∴AD=CE;∵△CFD≌△BFE,∴BE=CD.在Rt△CDE中,由勾股定理得:,∴ .故選B.【點睛】本題是幾何綜合題,考查了等腰直角三角形、全等三角形和勾股定理等重要幾何知識點,綜合性比較強.解決這個問題的關(guān)鍵在于利用全等三角形的性質(zhì).2.A解析:A【解析】【分析】作AD′⊥AD,AD′=AD,連接CD′,DD′,根據(jù)等式的性質(zhì),可得∠BAD與∠CAD′的關(guān)系,根據(jù)SAS,可得△BAD與△CAD′的關(guān)系,根據(jù)全等三角形的性質(zhì),可得BD與CD′的關(guān)系,根據(jù)勾股定理,可得答案.【詳解】作AD′⊥AD,AD′=AD,連接CD′,DD′,則有∠AD′D=∠D′AD=,∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD與△CAD′中,∴△BAD≌△CAD′(SAS),∴BD=CD′,∠DAD′=90176。 C.45176。AB=BC,三角形的頂點在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為2,l2,l3之間的距離為3,則AC的長是( ?。〢. B. C.4 D.72
點擊復制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1