freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

八年級數(shù)學試卷易錯易錯壓軸勾股定理選擇題復習題(含答案)-文庫吧資料

2025-04-01 22:37本頁面
  

【正文】 ,∴PE+PF=AC,設AD=x,BD=CD=3x,AB=4x,∵AC2=CD2AD2=(3x)2x2=8x2,∵AC2=BC2AB2=()2(4x)2,∴x=2,∴AC=4,∴PE+PF=4.故選C【點睛】本題考查勾股定理、等腰三角形的性質(zhì)等知識,解題的關鍵是學會利用面積法證明線段之間的關系,靈活運用勾股定理解決問題,屬于中考??碱}型.9.D解析:D【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點,的最短距離為線段的長.∵已知圓柱的底面直徑,∴,在中, ,∴,∴從點爬到點,然后再沿另一面爬回點,則小蟲爬行的最短路程的平方為.故選D.【點睛】本題考查了平面展開最短路徑問題,解題的關鍵是會將圓柱的側(cè)面展開,并利用勾股定理解答.10.D解析:D【分析】作點A關于OM的對稱點E,AE交OM于點D,連接BE、OE,BE交OM于點C,此時△ABC周長最小,根據(jù)題意及作圖可得出△OAD是等腰直角三角形,OA=OE=3,所以∠OAE=∠OEA=45176。.∴∠ABD+∠DBC=45176。.∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90176?!唷螧AC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.∵在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS).∴BD=CE.本結(jié)論正確.②∵△BAD≌△CAE,∴∠ABD=∠ACE.∵∠ABD+∠DBC=45176。.∴PD∥BC,且PD為⊙O的切線.∴∠PDE=90176。由勾股定理得CD′===6,故選A.【點睛】本題考查了全等三角形的判定與性質(zhì),利用了全等三角形的判定與性質(zhì),勾股定理,添加輔助線作出全等圖形是解題關鍵.4.A解析:A【解析】【分析】根據(jù)以及三角形三邊關系可得2bc>a 2 ,再根據(jù)(bc) 2 ≥0,可推導得出b 2 +c 2 >a 2 ,據(jù)此進行判斷即可得.【詳解】∵ ,∴,∴2bc=a(b+c),∵a、b、c是三角形的三條邊,∴b+c>a,∴2bc>a )A.3 B. C.5 D.30.以下列各組數(shù)為邊長,能組成直角三角形的是( )A.1,2,3 B.2,3,4 C.3,4,6 D.1,2【參考答案】***試卷處理標記,請不要刪除一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.D解析:D【分析】將容器側(cè)面展開,建立A關于EG的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為最短路徑,由勾股定理求出A′D即圓柱底面周長的一半,由此即可解題.【詳解】解:如圖,將圓柱展開,為上底面圓周長的一半,作關于的對稱點,連接交于,則螞蟻吃到蜂蜜需爬行的最短路徑為的長,即,延長,過作于,中,由勾股定理得:,該圓柱底面周長為:,故選D.【點睛】本題考查了平面展開最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進行計算是解題的關鍵.同時也考查了同學們的創(chuàng)造性思維能力.2.D解析:D【分析】先根據(jù)B(3m,4m+1),可知B在直線y=x+1上,所以當BD⊥直線y=x+1時,BD最小,找一等量關系列關于m的方程,作輔助線:過B作BH⊥x軸于H,則BH=4m+1,利用三角形相似得BH2=EH?FH,列等式求m的值,得BD的長即可.【詳解】解:如圖,∵點B(3m,4m+1),∴令,∴y=x+1,∴B在直線y=x+1上,∴當BD⊥直線y=x+1時,BD最小,過B作BH⊥x軸于H,則BH=4m+1,∵BE在直線y=x+1上,且點E在x軸上,∴E(?,0),G(0,1)∵F是AC的中點∵A(0,?2),點C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH?FH,∴(4m+1)2=(3m+)(3?3m)解得:m1=?(舍),m2=,∴B(,),∴BD=2BF=2=6,則對角線BD的最小值是6;故選:D.【點睛】本題考查了平行四邊形的性質(zhì),利用待定系數(shù)法求一次函數(shù)的解析式,三角形相似的判定,圓形與坐標特點,.3.A解析:A【解析】【分析】作AD′⊥AD,AD′=AD,連接CD′,DD′,根據(jù)等式的性質(zhì),可得∠BAD與∠CAD′的關系,根據(jù)SAS,可得△BAD與△CAD′的關系,根據(jù)全等三角形的性質(zhì),可得BD與CD′的關系,根據(jù)勾股定理,可得答案.【詳解】作AD′⊥AD,AD′=AD,連接CD′,DD′,則有∠AD′D=∠D′AD=,∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD與△CAD′中,∴△BAD≌△CAD′(SAS),∴BD=CD′,∠DAD′=90176。AB=1,BD⊥BC,BD=BC,CF平分∠BCD交BD、AD于E、F,則EDC的面積為( )A.2﹣2 B.3﹣2 C.2﹣ D.﹣127.如圖,已知AB是線段MN上的兩點,MN=12,MA=3,MB>3,以A為中心順時針旋轉(zhuǎn)點M,以點B為中心順時針旋轉(zhuǎn)點N,使M、N兩點重合成一點C,構成△ABC,當△ABC為直角三角形時AB的長是( )A.3 B.5 C.4或5 D.3或5128.如圖
點擊復制文檔內(nèi)容
語文相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1