【摘要】第一篇:0907線性代數(shù)真題及答案 全國2009年7月高等教育自學(xué)考試 線性代數(shù)(經(jīng)管類)試題 課程代碼:04184試卷說明:在本卷中,AT表示矩陣A的轉(zhuǎn)置矩陣;A*表示A的伴隨矩陣;R(A)表...
2024-11-16 02:36
【摘要】全國2010年度4月高等教育自學(xué)考試線性代數(shù)(經(jīng)管類)試題答案一、單項選擇題(本大題共10小題,每小題2分,共20分)1.已知2階行列式,,則(B)A. B. C. D..2.設(shè)A,B,C均為n階方陣,,,則(D)A.ACB B.CAB C.CBA D.BCA.3.設(shè)A為3階方陣,B為4階方陣,且,
2025-06-27 03:27
【摘要】第一篇:線性代數(shù)試題及答案 04184線性代數(shù)(經(jīng)管類)一、二、單選題 1、B:-1A:-3C:1D:3做題結(jié)果:A參考答案:D 2、B:dA:abcdC:6D:0做題結(jié)果:A參考答案:D 3...
2024-11-19 03:43
【摘要】第一篇:線性代數(shù)試題及答案 線性代數(shù)習(xí)題和答案 第一部分 選擇題 (共28分) 一、單項選擇題(本大題共14小題,每小題2分,共28分)在每小題列出的四個選項中只有一個是符合題目要求的,請將...
2024-10-15 12:35
【摘要】-1-(試卷一)一、填空題(本題總計20分,每小題2分)1.排列7623451的逆序數(shù)是_______。2.若122211211?aaaa,則?160030322211211aaaa3.已知n階矩陣A、B和C滿足EABC?,其中E為n階
2025-01-12 10:38
【摘要】線性代數(shù)期末試卷共19頁第19頁2011-2012-2線性代數(shù)46學(xué)時期末試卷(A)考試方式:閉卷考試時間:一、單項選擇題(每小題3分,共15分),齊次線性方程組僅有零解的充分必要條件是的(A).()列向量組線性無關(guān),
2025-07-01 21:47
【摘要】第一篇:線性代數(shù)4試卷及答案 線性代數(shù)(經(jīng)管類)試題B試卷滿分100分 考試時間120分鐘 (出卷人:廖磊)試卷說明:AT表示矩陣A的轉(zhuǎn)置矩陣,A*表示矩陣A的伴隨矩陣,E是單位矩陣,|A|表示...
2024-11-19 02:32
【摘要】第一篇:線性代數(shù)題[本站推薦] 已知:A是三階方陣,A*A不等于零向量,A*A*A等于零向量。 問:1)能否求出A的特征值?說明原因。 2)A能否和一個對角陣相似,若能側(cè)求出;否則,說明原因。 ...
2024-10-29 06:32
【摘要】第一篇:線性代數(shù)C答案 線性代數(shù)模擬題 一.=m,依下列次序?qū)ij進(jìn)行變換后,其結(jié)果是(A).交換第一行與第五行,再轉(zhuǎn)置,用2乘所有的元素,再用-3乘以第二列加于第三列,最后用4除第二行各元素....
2024-11-09 22:39
【摘要】第一篇:線性代數(shù)證明題 、B都是n階對稱矩陣,并且B是可逆矩陣,證明:AB-1+、B為對稱矩陣,所以AT=A,BT=B TTT-1-1-1-1-1證明:因為T(AB-1+B-1A)T=(AB-1)...
2024-10-28 04:51
【摘要】第一篇:線性代數(shù)習(xí)題答案 習(xí)題三(A類) =(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1...
【摘要】第一篇:線性代數(shù)習(xí)題答案 、=2,s=5,t=8或r=5,s=8,t=2或r=8,s=2,t==2,j=;a13a25a32a44a51;;當(dāng)k為偶數(shù)時,排列為偶排列,當(dāng)k為奇數(shù)時,(1)1;(2)...
2024-11-09 12:06
【摘要】對外經(jīng)濟(jì)貿(mào)易大學(xué)遠(yuǎn)程教育學(xué)院線性代數(shù)期中測驗及答案(1)一、判斷下列結(jié)論是否正確。(每題1分,共計8分)1、對,如果其中任意兩個向量都線性無關(guān),則線性無關(guān);()2、如果向量組線性相關(guān),則其中任意向量都可以由其余向量線性表示;()3、是矩陣,齊次線性方程組只有零解的充要條件是
2024-10-06 16:22
【摘要】線性代數(shù)證明題1.設(shè)是非零的四維列向量,為的伴隨矩陣,已知的基礎(chǔ)解系為,證明是方程組的基礎(chǔ)解系.,且,則必是可逆矩陣。3.均是階矩陣,為階單位矩陣,若,證明:4.設(shè)3級方陣滿足,證明:可逆,并求其逆.5.設(shè)是一個級方陣,且,證明:存在一個級可逆矩陣使的后行全為零.6.設(shè)矩陣,且,證明:的行向量組線性無關(guān).7.,證明:是冪等矩陣的充要條件是,試證:也是對稱矩陣
2024-08-16 15:25
【摘要】1第一章行列式:(1)381141102???;(2)bacacbcba(3)222111cbacba;(4)yxyxxyxyyxyx???.解(1)????381141102
2025-01-12 10:35