【摘要】第一篇:數(shù)學(xué)教材章節(jié)《中心對(duì)稱圖形》教學(xué)反思 著名的美國教育心理學(xué)家波斯納提出了一個(gè)教師成長公式:教師成長=經(jīng)驗(yàn)反思。每次上完課后,反思自己的教學(xué)行為,總結(jié)教學(xué)中的得與失,這既是一種學(xué)習(xí),也是在不斷...
2024-11-15 04:49
【摘要】第一篇:中心對(duì)稱圖形教學(xué)反思 中心對(duì)稱圖形教學(xué)反思 劉仕菊 昨天我和同學(xué)們共同學(xué)習(xí)了《中心對(duì)稱圖形》一課,縱觀這一節(jié)數(shù)學(xué)課,課堂教學(xué)模式發(fā)生了根本性的變化,老師不再是簡單的知識(shí)傳授者,而是一個(gè)組...
2024-10-21 17:48
【摘要】《中心對(duì)稱圖形》教學(xué)反思 《中心對(duì)稱圖形》教學(xué)反思1在教學(xué)中以出示旋轉(zhuǎn)對(duì)稱圖形為切入點(diǎn),讓學(xué)生在復(fù)習(xí)旋轉(zhuǎn)對(duì)稱圖形的知識(shí)上導(dǎo)出新的知識(shí),這樣有助于學(xué)生在原有的知識(shí)體系的基礎(chǔ)上構(gòu)建新的知識(shí)體系,...
2024-12-06 00:38
【摘要】(1)如圖,將線段AB繞它的中點(diǎn)旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?AB可以發(fā)現(xiàn):線段AB繞它的中點(diǎn)旋轉(zhuǎn)180°后與本身重合2)如圖將ABCD繞它的兩條對(duì)角線的交點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?ABCD可以發(fā)現(xiàn):ABCD繞它的兩條對(duì)角線交點(diǎn)O旋轉(zhuǎn)180
2024-11-11 02:19
【摘要】(1)這些圖形有什么共同的特點(diǎn)?都是旋轉(zhuǎn)對(duì)稱圖形。(2)這些圖形分別繞旋轉(zhuǎn)中心旋轉(zhuǎn)多少度后與自身重合?第一個(gè)圖形的旋轉(zhuǎn)角度為120°或240°第二個(gè)圖形的旋轉(zhuǎn)角度為72°或144°或216°或288°第三個(gè)圖形的旋轉(zhuǎn)角度為90°或180°或2
2024-11-16 17:03
【摘要】中心對(duì)稱與中心對(duì)稱圖形(2)思考⑴軸對(duì)稱與軸對(duì)稱圖形有怎樣的聯(lián)系與區(qū)別?⑵比照軸對(duì)稱與軸對(duì)稱圖形的關(guān)系,你認(rèn)為什么樣的圖形是中心對(duì)稱圖形?你對(duì)線段有哪些認(rèn)識(shí)?AB線段旋轉(zhuǎn)ADBC平旋轉(zhuǎn)你對(duì)平行四邊形有哪些認(rèn)識(shí)?把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)1800,如果旋轉(zhuǎn)后的圖形能夠與
2024-10-20 03:58
【摘要】第一篇:中心對(duì)稱和中心對(duì)稱圖形數(shù)學(xué)教案 中心對(duì)稱和中心對(duì)稱圖形數(shù)學(xué)教案 1.中心對(duì)稱 把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn),如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心,...
2024-11-15 01:10
【摘要】第一篇:中心對(duì)稱圖形教學(xué)設(shè)計(jì) 《中心對(duì)稱圖形》教學(xué)設(shè)計(jì) 太谷三中王琴平 【教學(xué)目標(biāo)】 :掌握中心對(duì)稱圖形的定義及其基本性質(zhì) :通過觀察、發(fā)現(xiàn)、交流、探索等一系列活動(dòng),培養(yǎng)學(xué)生的創(chuàng)新精神、提升...
2024-11-10 01:44
【摘要】中心對(duì)稱圖形義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書九年級(jí)上冊(cè)一教材的地位與作用這一節(jié)課與圖形的三種運(yùn)動(dòng)(平移、翻折、旋轉(zhuǎn))之一的“旋轉(zhuǎn)”有著不可分割的聯(lián)系,通過對(duì)這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生認(rèn)識(shí)圖形的三種基本運(yùn)動(dòng)中“旋轉(zhuǎn)”在幾何知識(shí)中的重要體現(xiàn),同時(shí)也完善了初中部分對(duì)“對(duì)稱圖形”(軸對(duì)稱圖形、中心對(duì)稱圖形)的知識(shí)講授,
2025-07-21 07:20
【摘要】中心對(duì)稱與中心對(duì)稱圖形小雄中學(xué)數(shù)學(xué)組張安明一.知識(shí)回顧:把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)1800,如果它能與另一個(gè)圖形重合,就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱.2.中心對(duì)稱的性質(zhì):⑴關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形⑵關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中
2024-11-16 17:37
【摘要】中心對(duì)稱圖形(1)觀察下列圖形看看它們有沒有共同的特征?(2)你能將下圖中的“風(fēng)車”繞其上的一點(diǎn)旋轉(zhuǎn)180度,使旋轉(zhuǎn)前后的圖形完全重合嗎?正六邊形呢?A上圖繞中心旋轉(zhuǎn)180度與原圖重合中心對(duì)稱圖形的定義?在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形相互重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。這個(gè)點(diǎn)叫做
2025-07-26 03:41
【摘要】(1)把其中一個(gè)圖案繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?重合重合觀察(2)線段AC,BD相交于點(diǎn)O,OA=OC,OB=△OCD繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?ACBADE像這樣把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度,如果它能夠和另一個(gè)圖
2024-11-13 21:32
【摘要】數(shù)學(xué)的對(duì)稱美是客觀世界的一個(gè)側(cè)面的反映.哥白尼說:“在這種有條不紊的安排之下,宇宙中存在著奇妙的對(duì)稱……”.對(duì)稱是廣義的,字母的對(duì)稱,結(jié)構(gòu)的對(duì)稱,圖形的對(duì)稱,解法的對(duì)稱……無論哪種對(duì)稱,都是美好的.,...
2024-11-19 00:34
【摘要】初中數(shù)學(xué)八年級(jí)上冊(cè)(蘇科版)思考⑴軸對(duì)稱與軸對(duì)稱圖形有怎樣的聯(lián)系與區(qū)別?⑵比照軸對(duì)稱與軸對(duì)稱圖形的關(guān)系,你認(rèn)為什么樣的圖形是中心對(duì)稱圖形?你對(duì)線段有哪些認(rèn)識(shí)?ABADBC你對(duì)平行四邊形有哪些認(rèn)識(shí)?把一個(gè)平面圖形繞某一點(diǎn)旋轉(zhuǎn)1800,如果它能夠與原來圖形重合,那么這個(gè)圖形叫做中心
2024-12-04 03:54
【摘要】中心對(duì)稱與中心對(duì)稱圖形中心對(duì)稱與中心對(duì)稱圖形(第1課時(shí))【教學(xué)目標(biāo)】經(jīng)歷觀察.操作.分析等數(shù)學(xué)活動(dòng)過程,通過具體實(shí)例認(rèn)識(shí)中心對(duì)稱,知道中心對(duì)稱的性質(zhì).【教學(xué)重點(diǎn)】⒈中心對(duì)稱的涵義⒉中心對(duì)稱的性質(zhì).⒊成中心對(duì)稱的圖形的畫法【教學(xué)難點(diǎn)】⒈中心對(duì)稱的性質(zhì).⒉成中心對(duì)稱的圖形的畫法【設(shè)計(jì)
2024-12-12 21:14