freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

勾股定理獲獎?wù)f課稿實用29篇(參考版)

2024-11-04 17:50本頁面
  

【正文】 讓學(xué)生經(jīng)歷拼圖實驗、計算面積的過程,在過程中養(yǎng)成獨立思考、合作交流的學(xué)習(xí)習(xí)慣;讓各類型的學(xué)生在這些過程中發(fā)揮自己特長,通過解決問題增強自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣;通過老師的介紹,感受勾股定理的文化價值.能說出勾股定理,并能用勾股定理解決簡單問題.三、教學(xué)重點勾股定理的探索過程.四、教學(xué)難點將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.五、教學(xué)方法與教學(xué)手段采用探究發(fā)現(xiàn)式教學(xué),提供適當(dāng)?shù)膯栴}情境.給學(xué)生自主探究交流的空間,引導(dǎo)學(xué)生有目的地探索.六、教學(xué)過程(一)創(chuàng)設(shè)情境 提出問題1.同學(xué)們,我們已經(jīng)學(xué)過三角形的一些基本知識,如果一個三角形的兩條邊分別長6和8,你知道第三邊的長嗎?你知道第三邊長的范圍嗎?2.如果又已知這兩邊的夾角,那么第三邊的長是多少?3.已知直角三角形的兩邊的長,如何求第三邊的長呢?這節(jié)課就讓我們一起來探討這個問題.板書:直角三角形三邊數(shù)量關(guān)系.(這是對三角形三邊的不等關(guān)系和三角形全等的判定的回顧,從學(xué)生從原有的認知水平出發(fā),揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認知心理,也自然地引出本節(jié)課的目標(biāo).讓學(xué)生體會到當(dāng)一般性的問題不好解決時,可以先將一般問題轉(zhuǎn)化為特殊問題來研究.)(二)實踐探索 猜想歸納用什么方法來探求板書:直角三角形三邊數(shù)量關(guān)系呢?回憶我們曾經(jīng)利用圖形面積探索過數(shù)學(xué)公式,大家還記得在哪用過嗎?(學(xué)生討論)課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式.今天,讓我們試一試通過計算圖形的面積能不能。在本節(jié)課,要創(chuàng)設(shè)問題串,提供學(xué)生活動的方案,讓學(xué)生在活動中思考,在思考中創(chuàng)新,認識和理解勾股定理,并能利用勾股定理解決一些簡單的有關(guān)直角三角形的計算問題.二、教學(xué)目標(biāo)讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。在探求勾股定理的過程中,蘊涵了豐富的數(shù)學(xué)思想。在學(xué)生這些原有的認知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)――勾股定理。篇15:勾股定理說課稿一、教材分析本節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(蘇科版)八年級上冊第二章第一節(jié)“勾股定理”的第一課時.在本節(jié)課以前,學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識,如三角形的三邊不等關(guān)系,三角形全等的判定等。(四)問題解決:讓學(xué)生解決開頭的實際問題,前后呼應(yīng),學(xué)生從中能體會到成功的喜悅。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。這一過程有利于培養(yǎng)學(xué)生嚴(yán)謹、科學(xué)的學(xué)習(xí)態(tài)度。(三)歸納驗證:歸納 通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運用數(shù)學(xué)語言進行抽象、概括的能力是有益的,同時發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個結(jié)論要好的多。這樣設(shè)計不僅有利于突破難點,而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學(xué)習(xí)及有幫助。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。這種以實際問題為切入點引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學(xué)化”的過程。三、教學(xué)過程設(shè)計(一)提出問題:首先創(chuàng)設(shè)這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,,請問消防隊員能否進入三樓滅火?問題設(shè)計具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題―實驗操作―歸納驗證―問題解決―課堂小結(jié)―布置作業(yè)六部分。(三)本課的教學(xué)重點:探索勾股定理本課的教學(xué)難點:以直角三角形為邊的正方形面積的計算。在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察―猜想―歸納―驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:能說出勾股定理的內(nèi)容。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。第二組是開放性題目,讓學(xué)生課后思考總結(jié)一下判定一個三角形是直角三角形的方法。由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。(四)小結(jié)作業(yè)在小結(jié)環(huán)節(jié),我會隨機詢問學(xué)生勾股定理的逆定理是什么?如果判斷一個三角形是不是直角三角形,以及勾股定理的逆定理的應(yīng)用需要注意點什么等問題,先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法培養(yǎng)能力方面比如輔助線的添法。思維提高了課堂教學(xué)的效果和利用率。1115等等)讓學(xué)生口答讓所有的學(xué)生都能完成。(三)鞏固提高本著由淺入深的原則安排了三個題目。學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高,使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等順利作出了輔助直角三角形,整個證明過程自然無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程。這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點,我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學(xué)模型。(二)探究新知一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個結(jié),然后便得到一個直角三角形這是為什么?這個問題一出現(xiàn),馬上激起學(xué)生已有知識與待研究知識的認識沖突,引起了學(xué)生的重視激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐不失時機地讓學(xué)生感到數(shù)學(xué)就在身邊。【設(shè)計意圖】通過復(fù)習(xí)回顧能很好地將新舊知識聯(lián)系起來,使學(xué)生形成對知識的系統(tǒng)的認識。基于此,我準(zhǔn)備采用的教法是講練結(jié)合法,小組討論法。難點:探究勾股定理逆定理的證明過程。【情感態(tài)度與價值觀】通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。利用勾股定理的逆定理判定一個三角形是不是直角三角形。三、說教學(xué)目標(biāo)根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容結(jié)合學(xué)生實際我確定了如下教學(xué)目標(biāo)。二、說學(xué)情中學(xué)生心理學(xué)研究指出,初中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。一、說教材“勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化。根據(jù)新課程標(biāo)準(zhǔn),我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對教材的理解。結(jié)束語:我的說課完了,非常感謝各位領(lǐng)導(dǎo)和專家給了我這次學(xué)習(xí)、聆聽、參與、鍛煉的機會。布置作業(yè)??偨Y(jié)內(nèi)容,強化認識。分層訓(xùn)練,能力升級。嘗試運用,熟悉定理。同時提出原命題與逆命題及其關(guān)系。在這個過程中,要努力引導(dǎo)學(xué)生聯(lián)想到“全等”,進而設(shè)法構(gòu)造直角三角形,讓學(xué)生在不斷的嘗試、探究的過程中,總結(jié)出勾股定理的逆定理。然后再更改上面的例題,變?yōu)椤鰽BC三邊長為a、b、c,滿足,與以a、b為直角邊的直角三角形之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。我就采用分層導(dǎo)進的方法,讓學(xué)生從具體的例子中感受總結(jié),再歸納到中抽象中來。勾股定理逆定理的證明不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,構(gòu)造直角三角形就成為解決問題的關(guān)鍵。再引導(dǎo)啟發(fā)學(xué)生從這兩個活動中歸納思考:如果三角形的三邊長a、b、c滿足,那么此三角形是什么三角形?在整個過程的活動中,盡量給學(xué)生充足的時間和空間,以平等的身份參與到學(xué)生活動中來,幫助指導(dǎo)學(xué)生的實踐活動。動手實踐,檢測猜測。既鍛煉了學(xué)生的實踐、觀察能力,又滲透了人文和探究精神。同時通過引入,讓學(xué)生了解古代都用這種方法來確定直角的。讓學(xué)生實踐活動,動手操作,看自己畫的三角形是否為一個直角三角形。四、說教法。難點:理解勾股定理的逆定理的推導(dǎo)。本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點及關(guān)鍵。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內(nèi)在聯(lián)系。過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數(shù)形結(jié)合”方法的應(yīng)用。教學(xué)目標(biāo)支配著教學(xué)過程,教學(xué)目標(biāo)的制定和落實是實施課堂教學(xué)的關(guān)鍵。在教學(xué)中滲透類比、轉(zhuǎn)化,從特殊到一般的思想方法。還是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。這節(jié)內(nèi)容選自《蘇科版》義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)八年級上冊第三章《勾股定理》中的第二節(jié)。下面我將從教材、目標(biāo)、重點難點、教法、教學(xué)流程等幾個方面向各位專家闡述我對本節(jié)課的教學(xué)設(shè)想。預(yù)期的目標(biāo)沒有很好的達成,學(xué)生雖然掌握了勾股定理,但探索熱情沒有點燃,思維能力,動手能力,探索精神沒有很好的得到發(fā)展。對學(xué)生的啟發(fā)不夠,對學(xué)生的關(guān)注不夠,學(xué)生對問題的思考不能及時想出來,沒有及時很好的引導(dǎo),啟發(fā),應(yīng)讓學(xué)生多一些思考的空間,并及時交給思考的方法。反思:教學(xué)設(shè)計主要是體現(xiàn)從特殊到一般的知識形成過程,探索問題的設(shè)計上有點難,第二個問題應(yīng)加個3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時,這個問題可以不用設(shè)計進去,就為后面的練習(xí)留足時間。解決一個問題的方法是多樣性的,我們要多思考。 ,AB=6,BC=8,求AC.③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?④如圖,學(xué)校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.小結(jié)本課:學(xué)完了這節(jié)課,你有什么收獲?老師補充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。新知運用:①舉出勾股定理在生活中的運用。探索新知在這里我設(shè)計了四個內(nèi)容:①探索等腰直角三角形三邊的關(guān)系②邊長為5為邊長的直角三角形的三邊關(guān)系③學(xué)生畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系④三邊為a、b、c的直角三角形的三邊的關(guān)系,(證明)⑤勾股定理歷史介紹,讓學(xué)生體會勾股定理的文化價值。牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生在動手、動腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時讓學(xué)生感悟到:學(xué)習(xí)任何知識的最好方法就是自己去探究。教學(xué)難點:分割,補全法證面積相等,探索勾股定理。讓學(xué)生通過動手實踐,增強探究和創(chuàng)新意識,體驗研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學(xué)習(xí)方式。情感、態(tài)度與價值觀:通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。過程與方法:經(jīng)歷觀察—猜想—歸納—驗證等一系列過程,體會數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。因此他的教育教學(xué)價值就具體體現(xiàn)在如下三維目標(biāo)中:知識與技能:經(jīng)歷勾股定理的探索過程,體會數(shù)形結(jié)合思想。勾股定理的逆命題是否也正確?怎么證明?問題2:三邊長度分別3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系,你是怎樣得到的?(出示紙片)問題3:你能否借鑒問題2的方法來證明勾股定理的逆命題呢?學(xué)生活動:觀察思考,動手操作,分組討論,交流合作(教師引導(dǎo)學(xué)生主動探索,在師生互動中完成證明,得到勾股定理的逆定理)設(shè)計意圖:把“構(gòu)造直角三角形”這一方法的獲取過程交給學(xué)生,讓他們在不斷的嘗試、探究的過程中,親身體驗參與發(fā)現(xiàn)的愉悅,有效地突破本節(jié)的難點。問題1:觀察這些三角形,它們分別是什么形狀呢?并測量驗證問題2:前三個三角形三邊具有怎樣的關(guān)系呢?問題3: 結(jié)合三角形三邊長度的平方關(guān)系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關(guān)系嗎?學(xué)生活動:動手、觀察、測量、思考、猜想設(shè)計意圖:由特殊到一般,歸納猜想得出勾股定理的逆命題,既培養(yǎng)學(xué)生動手操作能力和尋求解決數(shù)學(xué)問題的一般方法,又體驗了數(shù)與形的內(nèi)在聯(lián)系。根據(jù)學(xué)法指導(dǎo)自主性和差異性原則,本節(jié)我主要采用自主探究學(xué)習(xí)法,通過設(shè)計一系列問題,引導(dǎo)學(xué)生主動探究新知,體現(xiàn)學(xué)習(xí)自主性,從不同層面發(fā)掘不同學(xué)生的不同能力。過程方法:通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)形結(jié)合方法的應(yīng)用通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。(二)教學(xué)目標(biāo)根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標(biāo)。本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識的意識是有很大的促進的。這種方法是認識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好思維品質(zhì)的形成有重要作用,對學(xué)生的終身發(fā)展也有一定的作用。四、設(shè)計說明
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1