【摘要】課題函數(shù)y=Asin(ωx+φ)的圖象(2)教學(xué)目標(biāo)知識(shí)與技能會(huì)用“五點(diǎn)法”畫函數(shù)y=Asin(ωx+φ)的圖象.能根據(jù)y=Asin(ωx+φ)的部分圖象,確定其解析式.過(guò)程與方法情感態(tài)度價(jià)值觀重點(diǎn)能根據(jù)y=Asin(ωx+
2024-12-09 01:56
【摘要】課題函數(shù)y=Asin(ωx+φ)的圖象教學(xué)目標(biāo)知識(shí)與技能掌握y=sinx與y=Asin(ωx+φ)圖象間的變換關(guān)系,并能正確地指出其變換步驟.過(guò)程與方法兩種途徑的變換順序不同,其中變換的量也有所不同情感態(tài)度價(jià)值觀數(shù)形結(jié)合識(shí)記結(jié)論重點(diǎn)理解y=Asin(ωx+φ)中
【摘要】函數(shù)y=Asin(ωx+φ)的圖象學(xué)習(xí)目標(biāo):1.會(huì)用“五點(diǎn)法”畫函數(shù)y=Asin(ωx+φ)的圖象.2.能根據(jù)y=Asin(ωx+φ)的部分圖象,確定其解析式.3.了解y=Asin(ωx+φ)的圖象的物理意義,能指出簡(jiǎn)諧運(yùn)動(dòng)中的振幅、周期、相位、初相.學(xué)習(xí)重點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象
【摘要】函數(shù)y=Asin(ωx+φ)的圖象1.若直線y=a與函數(shù)y=sinx的圖象相交,則相鄰的兩交點(diǎn)間的距離的最大值為()B.πD.2π解析:所求最大值,即為y=sinx的一個(gè)周期的長(zhǎng)度2π.答案:D2.已知簡(jiǎn)諧運(yùn)動(dòng)f(x)=2sin??????π3x+φ??????
2024-12-09 06:48
【摘要】函數(shù)y=Asin(ωx+φ)的圖象學(xué)習(xí)目標(biāo):1.理解y=Asin(ωx+φ)中ω、φ、A對(duì)圖象的影響.2.掌握y=sinx與y=Asin(ωx+φ)圖象間的變換關(guān)系,并能正確地指出其變換步驟.學(xué)習(xí)重點(diǎn):y=Asin(ωx+φ)中ω、φ、A對(duì)圖象及性質(zhì)學(xué)習(xí)難點(diǎn):圖象變換一.知識(shí)導(dǎo)學(xué)
【摘要】sin()yAx????問(wèn)題提出圖象是由函數(shù)的圖象經(jīng)過(guò)怎樣的變換而得到的?)sin(???xyxysin?的圖象,可以看作是把正弦曲線上所有的點(diǎn)向左(當(dāng)>0時(shí))或向右(當(dāng)<0時(shí))平行移動(dòng)||個(gè)單位長(zhǎng)度而得到.)si
2024-11-22 12:17
【摘要】函數(shù)y=Asin(ωx+φ)的圖象(一)選擇題象做以下變換得到的[]圖象
2024-12-06 10:15
【摘要】函數(shù)y=Asin(ωx+φ)的圖象1.把y=sinx的圖象向左平移π2個(gè)單位,得到的圖象的解析式為()A.y=-cosxB.y=sinx+π2C.y=sinx-π2D.y=cosx解析:y=sinx――→向左平移π2個(gè)單位y=sin??????x+π2=cosx
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)函數(shù)y=Asin(ωx+φ)的圖象(二)學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.若直線y=a與函數(shù)y=sinx的圖象相交,則相鄰的兩交點(diǎn)間的距離的最大值為()B.πD.2π解析:所求最大值,即為y=sinx的一個(gè)周期的長(zhǎng)度2π.答案:D
2024-12-13 03:45
【摘要】函數(shù)y=Asin(ωx+φ)的圖象考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難“五點(diǎn)法”畫y=Asin(ωx+φ)的圖象10平移變換和伸縮變換1、2、3、4、56、7、9綜合問(wèn)題8、11121.將函數(shù)y=sinx的圖象上所有的點(diǎn)向右平移π10個(gè)單位長(zhǎng)
【摘要】sin()yAx????問(wèn)題提出y=sinx的定義域、值域分別是什么?它有哪些基本性質(zhì)??y-1xO1π2π3π4π5π6π-2π-3π-4π-5π-6π-π4.、、A是影響函數(shù)圖象形態(tài)的重要參數(shù),對(duì)此,我們分別進(jìn)行
2024-11-21 12:03
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)函數(shù)y=Asin(ωx+φ)的圖象(一)課時(shí)跟蹤檢測(cè)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難“五點(diǎn)法”畫y=Asin(ωx+φ)的圖象10平移變換和伸縮變換1、2、3、4、56、7、9綜合問(wèn)題8、11
2024-12-13 03:44
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)函數(shù)y=Asin(ωx+φ)的圖象(一)學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.把y=sinx的圖象向左平移π2個(gè)單位,得到的圖象的解析式為()A.y=-cosxB.y=sinx+π2C.y=sinx-π2D.y=cosx解析:y=sinx――
【摘要】第一章三角函數(shù)函數(shù)y=Asin(ωx+φ)的圖象(二)1.了解A,ω,φ的物理意義.(重點(diǎn))2.了解y=Asin(ωx+φ)的實(shí)際意義,會(huì)用y=Asin(ωx+φ)的性質(zhì)解題.(重點(diǎn)、難點(diǎn))3.能根據(jù)y=Asin(ωx+φ)的部分圖象,確定其解析式.(重點(diǎn)、難點(diǎn))
2024-12-08 18:51
【摘要】三角函數(shù)的圖象和性質(zhì)變式1.三角函數(shù)圖像變換將函數(shù)12cos()32yx???的圖像作怎樣的變換可以得到函數(shù)cosyx?的圖像?變式1:將函數(shù)cosyx?的圖像作怎樣的變換可以得到函數(shù)2cos(2)4yx???的圖像?解:(1)先將函數(shù)cosyx?圖象上各點(diǎn)的縱坐標(biāo)擴(kuò)大為原來(lái)的2倍(橫坐標(biāo)不變),即