【正文】
答案選擇題:15: DAACD610: BCABB1115: DBADC1620: ADBBA2125: CBDCA2630: CDBCA3135: DDBCA3640: BADBA4145: DBDCD4650: CABCD5155: EBCGA改錯(cuò)題: 。The book I’m reading of talks about afternoon tea in is said to have started in the early 1800’ tea in the late agternoon provides a bridge between lunch and dinner, that might not be served until 8 o’clock at custom soon bees another meal of , it had a connection by the British porcelain(瓷器) in China was traditionally drank from cupswithout tea got popular in Britain, there was a crying need for good cup with handles to suit British made for the grow in the porcelain 書面表達(dá)(滿分25分)假定你是李華,自制一些中國(guó)結(jié)(Chinese knot)。修改:在錯(cuò)的詞下劃一橫線,并在該詞下面寫出修改后的詞。增加:把缺詞處加一個(gè)漏符號(hào)(∧),并在其下面寫出該加的詞。第三部分 寫作(共兩頁(yè),滿分35分)第一節(jié) 短文改錯(cuò)(共10小題;每小題1分,滿分10分)假定英語(yǔ)課上老師要求同桌之間交換修改作文,請(qǐng)你修改你同桌寫的以下作文。t want is for them to fall asleep trying to force a whole set of rules into it will just make things worse2013年普通高等學(xué)校招生全國(guó)統(tǒng)一考試英語(yǔ)第Ⅱ卷注意:將答案寫在答題卡上。t like anybody else already do lots of things well your back on too many rules the rules about dos and don39。You are a special person not a cloneMost importantly, good public speaking training should treat you as a special one, with your own training course should help you bring out yourpersonality, not try to turn you into someone you39。re going to be talking far as we39。s going to give you lots of dos and don39。t do.Focus on positivesAny training you do to bee more effective at public speaking should always focus on the positive aspects of what you already do can hurt confidence more than being told that you aren39。Get a coachso get there are about a billion panies out there all ready to offer you public speaking training and courses, here are some things to look for when deciding the training that39。選項(xiàng)中有兩項(xiàng)為多于選項(xiàng)。s an eitheror situationand my bossand then choose a meaningful charity from a your mother gets the gift, she will be told that she has helped the chosen are you advised to do for your mother at doctor39。;。m sorry I made a mistake! your time 39。例:答案是B。不能答在試卷上,否則無(wú)效。第Ⅰ卷注意事項(xiàng):Ⅰ卷時(shí),考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。為CE與平面ABE所成的角. ∵CE=,∴CH=EH=. 直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2. 由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD為直角三角形,AD===,故CG===,DG==,又,則,∴,即二面角C﹣AD﹣E的大?。?【點(diǎn)評(píng)】本題主要考查通過(guò)證明線面垂直來(lái)證明線線垂直的方法,以及求二面角的大小的方法,屬于中檔題. 19.(12分)已知函數(shù)f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;(Ⅱ)若f(x)在區(qū)間(0,)上是減函數(shù),求實(shí)數(shù)a的取值范圍. 【考點(diǎn)】3D:函數(shù)的單調(diào)性及單調(diào)區(qū)間;3E:函數(shù)單調(diào)性的性質(zhì)與判斷.菁優(yōu)網(wǎng)版權(quán)所有 【專題】16:壓軸題. 【分析】(1)求單調(diào)區(qū)間,先求導(dǎo),令導(dǎo)函數(shù)大于等于0即可.(2)已知f(x)在區(qū)間(0,)上是減函數(shù),即f′(x)≤0在區(qū)間(0,)上恒成立,然后用分離參數(shù)求最值即可. 【解答】解:(Ⅰ)當(dāng)a=3時(shí),f(x)=﹣x2+3x+1﹣lnx ∴ 解f′(x)>0,即:2x2﹣3x+1<0 函數(shù)f(x)的單調(diào)遞增區(qū)間是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上為減函數(shù),∴x∈時(shí)﹣2x+a﹣≤0恒成立. 即a≤2x+恒成立. 設(shè),則 ∵x∈時(shí),>4,∴g′(x)<0,∴g(x)在上遞減,∴g(x)>g()=3,∴a≤3. 【點(diǎn)評(píng)】本題考查函數(shù)單調(diào)性的判斷和已知函數(shù)單調(diào)性求參數(shù)的范圍,此類問(wèn)題一般用導(dǎo)數(shù)解決,綜合性較強(qiáng). 20.(12分)已知5只動(dòng)物中有1只患有某種疾病,需要通過(guò)化驗(yàn)血液來(lái)確定患病的動(dòng)物.血液化驗(yàn)結(jié)果呈陽(yáng)性的即為患病動(dòng)物,呈陰性即沒(méi)患?。旅媸莾煞N化驗(yàn)方法:方案甲:逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止. 方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽(yáng)性則表明患病動(dòng)物為這3只中的1只,然后再逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn).(Ⅰ)求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率;(Ⅱ)ξ表示依方案乙所需化驗(yàn)次數(shù),求ξ的期望. 【考點(diǎn)】C6:等可能事件和等可能事件的概率;CH:離散型隨機(jī)變量的期望與方差.菁優(yōu)網(wǎng)版權(quán)所有 【分析】(1)由題意得到這兩種方案的化驗(yàn)次數(shù),算出在各個(gè)次數(shù)下的概率,寫出化驗(yàn)次數(shù)的分布列,求出方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率.(2)根據(jù)上一問(wèn)乙的化驗(yàn)次數(shù)的分布列,利用期望計(jì)算公式得到結(jié)果. 【解答】解:(Ⅰ)若乙驗(yàn)兩次時(shí),有兩種可能:①先驗(yàn)三只結(jié)果為陽(yáng)性,再?gòu)闹兄饌€(gè)驗(yàn)時(shí),恰好一次驗(yàn)中概率為:②先驗(yàn)三只結(jié)果為陰性,再?gòu)钠渌鼉芍恢序?yàn)出陽(yáng)性(無(wú)論第二次試驗(yàn)中有沒(méi)有,均可以在第二次結(jié)束),∴乙只用兩次的概率為. 若乙驗(yàn)三次時(shí),只有一種可能:先驗(yàn)三只結(jié)果為陽(yáng)性,再?gòu)闹兄饌€(gè)驗(yàn)時(shí),恰好二次驗(yàn)中概率為在三次驗(yàn)出時(shí)概率為 ∴甲種方案的次數(shù)不少于乙種次數(shù)的概率為:(Ⅱ)ξ表示依方案乙所需化驗(yàn)次數(shù),∴ξ的期望為Eξ=2+3=. 【點(diǎn)評(píng)】期望是概率論和數(shù)理統(tǒng)計(jì)的重要概念之一,是反映隨機(jī)變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計(jì)知識(shí)做鋪墊.同時(shí),它在市場(chǎng)預(yù)測(cè),經(jīng)濟(jì)統(tǒng)計(jì),風(fēng)險(xiǎn)與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠(yuǎn)的影響. 21.(12分)雙曲線的中心為原點(diǎn)O,焦點(diǎn)在x軸上,兩條漸近線分別為l1,l2,經(jīng)過(guò)右焦點(diǎn)F垂直于l1的直線分別交l1,l2于A,B兩點(diǎn).已知||、||、||成等差數(shù)列,且與同向.(Ⅰ)求雙曲線的離心率;(Ⅱ)設(shè)AB被雙曲線所截得的線段的長(zhǎng)為4,求雙曲線的方程. 【考點(diǎn)】KB:雙曲線的標(biāo)準(zhǔn)方程;KC:雙曲線的性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有 【專題】11:計(jì)算題;16:壓軸題. 【分析】(1)由2個(gè)向量同向,得到漸近線的夾角范圍,求出離心率的范圍,再用勾股定理得出直角三角形的2個(gè)直角邊的長(zhǎng)度比,聯(lián)想到漸近線的夾角,求出漸近線的斜率,進(jìn)而求出離心率.(2)利用第(1)的結(jié)論,設(shè)出雙曲線的方程,將AB方程代入,運(yùn)用根與系數(shù)的關(guān)系及弦長(zhǎng)公式,求出待定系數(shù),即可求出雙曲線方程. 【解答】解:(1)設(shè)雙曲線方程為,由,同向,∴漸近線的傾斜角范圍為(0,),∴漸近線斜率為:,∴. ∵||、||、||成等差數(shù)列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)?2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也為直角三角形,即tan∠AOB=,而由對(duì)稱性可知:OA的斜率為k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可設(shè)雙曲線方程為﹣=1,∴c=b. 由于AB的傾斜角為+∠AOB,故AB的斜率為tan(+∠AOB)=﹣cot(∠AOB)=﹣2,∴AB的直線方程為 y=﹣2(x﹣b),代入雙曲線方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1?x2=,∴4=?=?,即16=﹣112b2,∴b2=9,所求雙曲線方程為:﹣=1. 【點(diǎn)評(píng)】做到邊做邊看,從而發(fā)現(xiàn)題中的巧妙,如據(jù),聯(lián)想到對(duì)應(yīng)的是2漸近線的夾角的正切值,屬于中檔題. 22.(12分)設(shè)函數(shù)f(x)=x﹣xlnx.?dāng)?shù)列{an}滿足0<a1<1,an+1=f(an).(Ⅰ)證明:函數(shù)f(x)在區(qū)間(0,1)是增函數(shù);(Ⅱ)證明:an<an+1<1;(Ⅲ)設(shè)b∈(a1,1),整數(shù).證明:ak+1>b. 【考點(diǎn)】6B:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;RG:數(shù)學(xué)歸納法.菁優(yōu)網(wǎng)版權(quán)所有 【專題】16:壓軸題. 【分析】(1)首先求出函數(shù)的導(dǎo)數(shù),然后令f′(x)=0,解出函數(shù)的極值點(diǎn),最后根據(jù)導(dǎo)數(shù)判斷函數(shù)在區(qū)間(0,1)上的單調(diào)性,從而 進(jìn)行證明.(2)由題意數(shù)列{an}滿足0<a1<1,an+1=f(an),求出an+1=an﹣anlnan,然后利用歸納法進(jìn)行證明;(3)由題意f(x)=x﹣xlnx,an+1=f(an)可得ak+1=ak﹣b﹣ak,然后進(jìn)行討論求解. 【解答】解:(Ⅰ)證明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,當(dāng)x∈(0,1)時(shí),f′(x)=﹣lnx>0 故函數(shù)f(x)在區(qū)間(0,1)上是增函數(shù);(Ⅱ)證明:(用數(shù)學(xué)歸納法)(i)當(dāng)n=1時(shí),0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函數(shù)f(x)在區(qū)間(0,1)是增函數(shù)且函數(shù)f(x)在x=1處連續(xù),∴f(x)在區(qū)間(0,1]是增函數(shù),a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假設(shè)當(dāng)x