freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx年高考理科數(shù)學(xué)試卷及答案---全國(guó)卷(新課標(biāo)版)word版a3版(編輯修改稿)

2025-10-13 15:47 本頁面
 

【文章內(nèi)容簡(jiǎn)介】 知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長(zhǎng)都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AB1與底面ABC所成角的正弦值等于()A. B. C. D. 12.(5分)如圖,一環(huán)形花壇分成A,B,C,D四塊,現(xiàn)有4種不同的花供選種,要求在每塊里種1種花,且相鄰的2塊種不同的花,則不同的種法總數(shù)為()A.96 B.84 C.60 D.48   二、填空題(共4小題,每小題5分,滿分20分)13.(5分)若x,y滿足約束條件,則z=2x﹣y的最大值為  ?。?14.(5分)已知拋物線y=ax2﹣1的焦點(diǎn)是坐標(biāo)原點(diǎn),則以拋物線與兩坐標(biāo)軸的三個(gè)交點(diǎn)為頂點(diǎn)的三角形面積為  ?。?15.(5分)在△ABC中,AB=BC,.若以A,B為焦點(diǎn)的橢圓經(jīng)過點(diǎn)C,則該橢圓的離心率e=  ?。?16.(5分)等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C﹣AB﹣D的余弦值為,M,N分別是AC,BC的中點(diǎn),則EM,AN所成角的余弦值等于   .   三、解答題(共6小題,滿分70分)17.(10分)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值. 18.(12分)四棱錐A﹣BCDE中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,BC=2,AB=AC.(Ⅰ)證明:AD⊥CE;(Ⅱ)設(shè)CE與平面ABE所成的角為45176。,求二面角C﹣AD﹣E的大?。?19.(12分)已知函數(shù)f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;(Ⅱ)若f(x)在區(qū)間(0,)上是減函數(shù),求實(shí)數(shù)a的取值范圍. 20.(12分)已知5只動(dòng)物中有1只患有某種疾病,需要通過化驗(yàn)血液來確定患病的動(dòng)物.血液化驗(yàn)結(jié)果呈陽性的即為患病動(dòng)物,呈陰性即沒患?。旅媸莾煞N化驗(yàn)方法:方案甲:逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止. 方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽性則表明患病動(dòng)物為這3只中的1只,然后再逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn).(Ⅰ)求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率;(Ⅱ)ξ表示依方案乙所需化驗(yàn)次數(shù),求ξ的期望. 21.(12分)雙曲線的中心為原點(diǎn)O,焦點(diǎn)在x軸上,兩條漸近線分別為l1,l2,經(jīng)過右焦點(diǎn)F垂直于l1的直線分別交l1,l2于A,B兩點(diǎn).已知||、||、||成等差數(shù)列,且與同向.(Ⅰ)求雙曲線的離心率;(Ⅱ)設(shè)AB被雙曲線所截得的線段的長(zhǎng)為4,求雙曲線的方程. 22.(12分)設(shè)函數(shù)f(x)=x﹣xlnx.?dāng)?shù)列{an}滿足0<a1<1,an+1=f(an).(Ⅰ)證明:函數(shù)f(x)在區(qū)間(0,1)是增函數(shù);(Ⅱ)證明:an<an+1<1;(Ⅲ)設(shè)b∈(a1,1),整數(shù).證明:ak+1>b.   2008年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(理科)(全國(guó)卷Ⅰ)參考答案與試題解析   一、選擇題(共12小題,每小題5分,滿分60分)1.(5分)函數(shù)的定義域?yàn)椋ǎ〢.{x|x≥0} B.{x|x≥1} C.{x|x≥1}∪{0} D.{x|0≤x≤1} 【考點(diǎn)】33:函數(shù)的定義域及其求法.菁優(yōu)網(wǎng)版權(quán)所有 【分析】偶次開方的被開方數(shù)一定非負(fù).x(x﹣1)≥0,x≥0,解關(guān)于x的不等式組,即為函數(shù)的定義域. 【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0. 又因?yàn)閤≥0,所以x≥1,或x=0;所以函數(shù)的定義域?yàn)閧x|x≥1}∪{0} 故選:C. 【點(diǎn)評(píng)】定義域是高考必考題通常以選擇填空的形式出現(xiàn),通常注意偶次開方一定非負(fù),分式中分母不能為0,對(duì)數(shù)函數(shù)的真數(shù)一定要大于0,指數(shù)和對(duì)數(shù)的底數(shù)大于0且不等于1.另外還要注意正切函數(shù)的定義域.   2.(5分)汽車經(jīng)過啟動(dòng)、加速行駛、勻速行駛、減速行駛之后停車,若把這一過程中汽車的行駛路程s看作時(shí)間t的函數(shù),其圖象可能是()A. B. C. D. 【考點(diǎn)】3A:函數(shù)的圖象與圖象的變換.菁優(yōu)網(wǎng)版權(quán)所有 【專題】16:壓軸題;31:數(shù)形結(jié)合. 【分析】由已知中汽車經(jīng)過啟動(dòng)、加速行駛、勻速行駛、減速行駛之后停車,汽車的行駛路程s看作時(shí)間t的函數(shù),我們可以根據(jù)實(shí)際分析函數(shù)值S(路程)與自變量t(時(shí)間)之間變化趨勢(shì),分析四個(gè)答案即可得到結(jié)論. 【解答】解:由汽車經(jīng)過啟動(dòng)后的加速行駛階段,路程隨時(shí)間上升的速度越來越快,故圖象的前邊部分為凹升的形狀;在汽車的勻速行駛階段,路程隨時(shí)間上升的速度保持不變 故圖象的中間部分為平升的形狀;在汽車減速行駛之后停車階段,路程隨時(shí)間上升的速度越來越慢,故圖象的前邊部分為凸升的形狀;分析四個(gè)答案中的圖象,只有A答案滿足要求,故選:A. 【點(diǎn)評(píng)】從左向右看圖象,如果圖象是凸起上升的,表明相應(yīng)的量增長(zhǎng)速度越來越慢;如果圖象是凹陷上升的,表明相應(yīng)的量增長(zhǎng)速度越來越快;如果圖象是直線上升的,表明相應(yīng)的量增長(zhǎng)速度保持不變;如果圖象是水平直線,表明相應(yīng)的量保持不變,即不增長(zhǎng)也不降低;如果圖象是凸起下降的,表明相應(yīng)的量降低速度越來越快;如果圖象是凹陷下降的,表明相應(yīng)的量降低速度越來越慢;如果圖象是直線下降的,表明相應(yīng)的量降低速度保持不變.   3.(5分)在△ABC中,=,=.若點(diǎn)D滿足=2,則=()A. B. C. D. 【考點(diǎn)】9B:向量加減混合運(yùn)算.菁優(yōu)網(wǎng)版權(quán)所有 【分析】把向量用一組向量來表示,做法是從要求向量的起點(diǎn)出發(fā),盡量沿著已知向量,走到要求向量的終點(diǎn),把整個(gè)過程寫下來,即為所求.本題也可以根據(jù)D點(diǎn)把BC分成一比二的兩部分入手. 【解答】解:∵由,∴,∴. 故選:A. 【點(diǎn)評(píng)】用一組向量來表示一個(gè)向量,是以后解題過程中常見到的,向量的加減運(yùn)算是用向量解決問題的基礎(chǔ),要學(xué)好運(yùn)算,才能用向量解決立體幾何問題,三角函數(shù)問題,好多問題都是以向量為載體的   4.(5分)設(shè)a∈R,且(a+i)2i為正實(shí)數(shù),則a=()A.2 B.1 C.0 D.﹣1 【考點(diǎn)】A4:復(fù)數(shù)的代數(shù)表示法及其幾何意義.菁優(yōu)網(wǎng)版權(quán)所有 【分析】注意到a+bi(a,b∈R)為正實(shí)數(shù)的充要條件是a>0,b=0 【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故選D. 【點(diǎn)評(píng)】本題的計(jì)算中,要注意到相應(yīng)變量的范圍.   5.(5分)已知等差數(shù)列{an}滿足a2+a4=4,a3+a5=10,則它的前10項(xiàng)的和S10=()A.138 B.135 C.95 D.23 【考點(diǎn)】83:等差數(shù)列的性質(zhì);85:等差數(shù)列的前n項(xiàng)和.菁優(yōu)網(wǎng)版權(quán)所有 【專題】11:計(jì)算題. 【分析】本題考查的知識(shí)點(diǎn)是等差數(shù)列的性質(zhì),及等差數(shù)列前n項(xiàng)和,根據(jù)a2+a4=4,a3+a5=10我們構(gòu)造關(guān)于基本量(首項(xiàng)及公差)的方程組,解方程組求出基本量(首項(xiàng)及公差),進(jìn)而代入前n項(xiàng)和公式,即可求解. 【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95. 故選:C. 【點(diǎn)評(píng)】在求一個(gè)數(shù)列的通項(xiàng)公式或前n項(xiàng)和時(shí),如果可以證明這個(gè)數(shù)列為等差數(shù)列,或等比數(shù)列,則可以求出其基本項(xiàng)(首項(xiàng)與公差或公比)進(jìn)而根據(jù)等差或等比數(shù)列的通項(xiàng)公式,寫出該數(shù)列的通項(xiàng)公式,如果未知這個(gè)數(shù)列的類型,則可以判斷它是否與某個(gè)等差或等比數(shù)列有關(guān),間接求其通項(xiàng)公式.   6.(5分)若函數(shù)y=f(x)的圖象與函數(shù)y=ln的圖象關(guān)于直線y=x對(duì)稱,則f(x)=()A.e2x﹣2 B.e2x C.e2x+1 D.e2x+2 【考點(diǎn)】4R:反函數(shù).菁優(yōu)網(wǎng)版權(quán)所有 【專題】11:計(jì)算題. 【分析】由函數(shù)y=f(x)的圖象與函數(shù)y=ln的圖象關(guān)于直線y=x對(duì)稱知這兩個(gè)函數(shù)互為反函數(shù),故只要求出函數(shù)y=f(x)的反函數(shù)即可,欲求原函數(shù)的反函數(shù),即從原函數(shù)y=ln中反解出x,后再進(jìn)行x,y互換,即得反函數(shù)的解析式. 【解答】解:∵,∴,∴x=(ey﹣1)2=e2y﹣2,改寫為:y=e2x﹣2 ∴答案為A. 【點(diǎn)評(píng)】本題主要考查了互為反函數(shù)圖象間的關(guān)系及反函數(shù)的求法.   7.(5分)已知曲線y=在點(diǎn)(3,2)處的切線與直線ax+y+1=0垂直,則a的值為()A.2 B. C.﹣ D.﹣2 【考點(diǎn)】6H:利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程.菁優(yōu)網(wǎng)版權(quán)所有 【專題】53:導(dǎo)數(shù)的綜合應(yīng)用. 【分析】求出函數(shù)的導(dǎo)數(shù),切線的斜率,由兩直線垂直的條件,即可得到a的值. 【解答】解:∵y=,∴y′==,∴曲線y=在點(diǎn)(3,2)處的切線的斜率k=﹣,∵曲線y=在點(diǎn)(3,2)處的切線與直線ax+y+1=0垂直,∴直線ax+y+1=0的斜率k′=﹣a=﹣1,即a=﹣2. 故選:D. 【點(diǎn)評(píng)】本題考查導(dǎo)數(shù)的幾何意義的求法,考查導(dǎo)數(shù)的運(yùn)算,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意直線與直線垂直的性質(zhì)的靈活運(yùn)用.   8.(5分)為得到函數(shù)的圖象,只需將函數(shù)y=sin2x的圖象()A.向左平移個(gè)長(zhǎng)度單位 B.向右平移個(gè)長(zhǎng)度單位 C.向左平移個(gè)長(zhǎng)度單位 D.向右平移個(gè)長(zhǎng)度單位 【考點(diǎn)】HJ:函數(shù)y=Asin(ωx+φ)的圖象變換.菁優(yōu)網(wǎng)版權(quán)所有 【專題】11:計(jì)算題. 【分析】先根據(jù)誘導(dǎo)公式將函數(shù)化為正弦的形式,再根據(jù)左加右減的原則進(jìn)行平移即可得到答案. 【解答】解:∵,只需將函數(shù)y=sin2x的圖象向左平移個(gè)單位得到函數(shù)的圖象. 故選:A. 【點(diǎn)評(píng)】本題主要考查誘導(dǎo)公式和三角函數(shù)的平移.屬基礎(chǔ)題.   9.(5分)設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式<0的解集為()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【考點(diǎn)】3N:奇偶性與單調(diào)性的綜合.菁優(yōu)網(wǎng)版權(quán)所有 【專題】16:壓軸題. 【分析】首先利用奇函數(shù)定義與得出x與f(x)異號(hào),然后由奇函數(shù)定義求出f(﹣1)=﹣f(1)=0,最后結(jié)合f(x)的單調(diào)性解出答案. 【解答】解:由奇函數(shù)f(x)可知,即x與f(x)異號(hào),而f(1)=0,則f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上為增函數(shù),則奇函數(shù)f(x)在(﹣∞,0)上也為增函數(shù),當(dāng)0<x<1時(shí),f(x)<f(1)=0,得<0,滿足;當(dāng)x>1時(shí),f(x)>f(1)=0,得>0,不滿足,舍去;當(dāng)﹣1<x<0時(shí),f(x)>f(﹣1)=0,得<0,滿足;當(dāng)x<﹣1時(shí),f(x)<f(﹣1)=0,得>0,不滿足,舍去;所以x的取值范圍是﹣1<x<0或0<x<1. 故選:D. 【點(diǎn)評(píng)】本題綜合考查奇函數(shù)定義與它的單調(diào)性.   10.(5分)若直線=1與圓x2+y2=1有公共點(diǎn),則()A.a(chǎn)2+b2≤1 B.a(chǎn)2+b2≥1 C. D. 【考點(diǎn)】J9:直線與圓的位置關(guān)系.菁優(yōu)網(wǎng)版權(quán)所有 【分析】用圓心到直線的距離小于或等于半徑,可以得到結(jié)果. 【解答】解:直線與圓有公共點(diǎn),即直線與圓相切或相交得:d≤r,∴,故選:D. 【點(diǎn)評(píng)】本題考查點(diǎn)到直線的距離公式,直線和圓的位置關(guān)系,是基礎(chǔ)題.   11.(5分)已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長(zhǎng)都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AB1與底面ABC所成角的正弦值等于()A. B. C. D. 【考點(diǎn)】LP:空間中直線與平面之間的位置關(guān)系.菁優(yōu)網(wǎng)版權(quán)所有 【專題】11:計(jì)算題;31:數(shù)形結(jié)合;4R:轉(zhuǎn)化法;5G:空間角. 【分析】法一:由題意可知三棱錐A1﹣ABC為正四面體,設(shè)棱長(zhǎng)為2,求出AB1及三棱錐的高,由線面角的定義可求出答案;法二:先求出點(diǎn)A1到底面的距離A1D的長(zhǎng)度,即知點(diǎn)B1到底面的距離B1E的長(zhǎng)度,再求出AE的長(zhǎng)度,在直角三角形AEB1中求AB1與底面ABC所成角的正切,再由同角三角函數(shù)的關(guān)系求出其正弦. 【解答】解:(法一)因?yàn)槿庵鵄BC﹣A1B1C1的側(cè)棱與底面邊長(zhǎng)都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,設(shè)為D,所以三棱錐A1﹣ABC為正四面體,
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1