freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

北師大版數(shù)學(xué)七下第5章生活中的軸對(duì)稱(chēng)單元測(cè)試題(參考版)

2024-12-04 05:19本頁(yè)面
  

【正文】 ; ( 2) ∵M(jìn)N 是線(xiàn)段 AC的垂直平分線(xiàn), ∴AE=EC . 故答案為: =; ( 3) ∵ 在 Rt△ABC 中, ∠B=90176。 ; ( 2) AE = EC;(填 “=”“ > ” 或 “ < ” ) ( 3)當(dāng) AB=3, AC=5時(shí), △ABE 的周長(zhǎng) = 7 . 【考點(diǎn)】 線(xiàn)段垂直平分線(xiàn)的性質(zhì);勾股定理的應(yīng)用. 【專(zhuān)題】 幾何圖形問(wèn)題. 【分析】 ( 1)由作圖可知, MN是線(xiàn)段 AC 的垂直平分線(xiàn),故可得出結(jié)論; ( 2)根據(jù)線(xiàn)段垂直平分線(xiàn)的性質(zhì)即可得出結(jié)論; ( 3)先根據(jù)勾股定理求出 BC 的長(zhǎng),進(jìn)而可得出結(jié)論. 【解答】 解:( 1) ∵ 由作圖可知, MN是線(xiàn)段 AC的垂直平分線(xiàn), ∴∠ADE=90176。 . 故答案為: 108. 【點(diǎn)評(píng)】 本題考查了線(xiàn)段垂直 平分線(xiàn)上的點(diǎn)到線(xiàn)段兩端點(diǎn)的距離相等的性質(zhì),等腰三角形三線(xiàn)合一的性質(zhì),等邊對(duì)等角的性質(zhì),以及翻折變換的性質(zhì),綜合性較強(qiáng),難度較大,作輔助線(xiàn),構(gòu)造出等腰三角形是解題的關(guān)鍵. 三、解答題(共 1小題) 30.( 2021?梅州)如圖,在 Rt△ABC 中, ∠B=90176。 ﹣ 36176。 ﹣ ∠COE ﹣ ∠OCB=180176。 , ∵ 將 ∠C 沿 EF( E在 BC上, F在 AC上)折疊,點(diǎn) C與點(diǎn) O恰好重合, ∴OE=CE , ∴∠COE=∠OCB=36176。=36176。 , ∴∠OBC=∠ABC ﹣ ∠ABO=63176。 ) =63176。 ﹣ ∠BAC ) = ( 180176。=27176。 ,點(diǎn) D為 AB中點(diǎn),且 OD⊥AB , ∠BAC的平分線(xiàn)與 AB的垂直平分線(xiàn)交于點(diǎn) O,將 ∠C 沿 EF( E在 BC上, F在 AC上)折疊,點(diǎn) C與點(diǎn) O恰好重合,則 ∠OEC 為 108 度. 【考點(diǎn)】 線(xiàn)段垂直平分線(xiàn)的性質(zhì);等腰三角形的性質(zhì);翻折變換(折疊問(wèn)題). 【專(zhuān)題】 壓軸 題. 【分析】 連接 OB、 OC,根據(jù)角平分線(xiàn)的定義求出 ∠BAO ,根據(jù)等腰三角形兩底角相等求出∠ABC ,再根據(jù)線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到線(xiàn)段兩端點(diǎn)的距離相等可得 OA=OB,根據(jù)等邊對(duì)等角可得 ∠ABO=∠BAO ,再求出 ∠OBC ,然后判斷出點(diǎn) O是 △ABC 的外心,根據(jù)三角形外心的性質(zhì)可得 OB=OC,再根據(jù)等邊對(duì)等角求出 ∠OCB=∠OBC ,根據(jù)翻折的性質(zhì)可得 OE=CE,然后根據(jù)等邊對(duì)等角求出 ∠COE ,再利用三角形的內(nèi)角和定理列式計(jì)算即可得解. 【解答】 解:如圖,連接 OB、 OC, ∵∠BAC=54176。 . 故答案為: 70176。 , ∵OB 平分 ∠ABC , ∴∠ABC=2∠OBC=235 176。=35176。 , ∴∠C=∠AOC ﹣ ∠ADC=125176。 ,則 ∠ABC= 70176。 . 故答案為: 50176。=180176。 , ∴∠A+∠A+15176。 , ∴∠ABC=∠A+15176。 , AB 的垂直平分線(xiàn) MN 交 AC 于點(diǎn) D,則 ∠A 的度數(shù)是 50176。 , 故答案為: 60. 【點(diǎn)評(píng)】 本題考查了等腰三角形性質(zhì),線(xiàn)段垂直平分線(xiàn)性質(zhì),三角形內(nèi)角和定理的應(yīng)用,注意:線(xiàn)段垂直平分線(xiàn)上的 點(diǎn)到線(xiàn)段兩個(gè)端點(diǎn)的距離相等. 25.( 2021?荊州)如圖, △ABC 中, AB=AC, AB的垂直平分線(xiàn)交邊 AB 于 D 點(diǎn),交邊 AC于 E點(diǎn),若 △ABC 與 △EBC 的周長(zhǎng)分別是 40cm, 24cm,則 AB= 16 cm. 【考點(diǎn)】 線(xiàn)段垂直平分線(xiàn)的性質(zhì);等腰三角形的性質(zhì). 【分析】 首先根據(jù) DE是 AB的垂直平分線(xiàn),可得 AE=BE;然后根據(jù) △ABC 的周長(zhǎng) =AB+AC+BC,△EBC 的周長(zhǎng) =BE+EC+BC=AE+EC+BC=AC+BC,可得 △ABC 的周長(zhǎng)﹣ △EBC 的周長(zhǎng) =AB,據(jù)此求出AB的長(zhǎng)度是多少即可. 【解答】 解: ∵DE 是 AB的垂直平分線(xiàn), ∴AE=BE ; ∵△ABC 的周長(zhǎng) =AB+AC+BC, △EBC 的周長(zhǎng) =BE+EC+BC=AE+EC+BC=AC+BC, ∴△ABC 的周長(zhǎng)﹣ △EBC 的周長(zhǎng) =AB, ∴AB=40 ﹣ 24=16( cm). 故答案為: 16. 【點(diǎn)評(píng)】 ( 1)此題主要考查了垂直平分線(xiàn)的性質(zhì),要熟練掌 握,解答此題的關(guān)鍵是要明確: 垂直平分線(xiàn)上任意一點(diǎn),到線(xiàn)段兩端點(diǎn)的距離相等. ( 2)此題還考查了等腰三角形的性質(zhì),以及三角形的周長(zhǎng)的求法,要熟練掌握. 26.( 2021?西寧)如圖, Rt△ABC 中, ∠B=90176。 , ∴∠A=180176。 ﹣ ∠B ﹣ ∠ACB 求出即可. 【解答】 解: ∵DE 是線(xiàn)段 BC的垂直平分線(xiàn), ∴BE=CE , ∴∠B=∠BCE=40176。 ,求出 ∠ACB=2∠BCE=80176。 , ∴∠ABC=∠C , ∴AC=AB=m , ∴△DBC 的周長(zhǎng)是 DB+BC+CD=BC+AD+DC=AC+BC=m+n, 故答案為: m+n. 【點(diǎn)評(píng)】 本題考查了三角形內(nèi)角和定理, 線(xiàn)段垂直平分線(xiàn)性質(zhì),等腰三角形的性質(zhì)的應(yīng)用,注意:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到線(xiàn)段兩個(gè)端點(diǎn)的距離相等. 23.( 2021?眉山)如圖,在 ?ABCD 中, AB=3, BC=5,對(duì)角線(xiàn) AC、 BD 相交于點(diǎn) O,過(guò)點(diǎn) O 作OE⊥AC ,交 AD于點(diǎn) E,連接 CE,則 △CDE 的周長(zhǎng)為 8 . 【考點(diǎn)】 線(xiàn)段垂直平分線(xiàn)的性質(zhì);平行四邊形的性質(zhì). 【專(zhuān)題】 幾何圖形問(wèn)題. 【分析】 根據(jù)平行四邊形的性質(zhì),得知 AO=OC,由于 OE⊥AC ,根據(jù)線(xiàn)段垂直平分線(xiàn)的性質(zhì),可知 AE=EC,則 △CDE 的周長(zhǎng)為 CD 與 AD之和,即可得解. 【解答】 解:根據(jù) 平行四邊形的性質(zhì), ∴AO=OC , ∵OE⊥AC , ∴OE 為 AC的垂直平分線(xiàn), ∴AE=EC , ∴△CDE 的周長(zhǎng)為: CD+AD=5+3=8, 故答案為: 8. 【點(diǎn)評(píng)】 本題考查了平行四邊形的性質(zhì)以及線(xiàn)段垂直平分線(xiàn)的性質(zhì),熟記各性質(zhì)與定理是解 題的關(guān)鍵. 24.( 2021?樂(lè)山)如圖,在 △ABC 中, BC邊的中垂線(xiàn)交 BC于 D,交 AB于 E.若 CE平分 ∠ACB ,∠B=40176。 ﹣ 30176。 ﹣ 40176。=70176。 , ∴∠ABC=40176。 , ∴AD=BD , ∴∠A=∠ABD=40176。 ,若 AB=m, BC=n,則 △DBC 的周長(zhǎng)為 m+n . 【考點(diǎn)】 線(xiàn)段垂直平分線(xiàn)的性質(zhì);三角形內(nèi)角和定理;等腰三角形的性質(zhì). 【分析】 根據(jù)線(xiàn)段垂直平分線(xiàn)性質(zhì)得出 AD=BD,推出 ∠A=∠ABD=40176。 , 故答案為: 15. 【點(diǎn)評(píng)】 本題考查了等腰三角形的性質(zhì),線(xiàn)段垂直平分線(xiàn)性質(zhì),三角形內(nèi)角和定理的應(yīng)用,能正確運(yùn)用定理求出各個(gè)角的度數(shù)是解此題的關(guān)鍵,難度適中. 20.( 2021?南平)已知點(diǎn) P在線(xiàn)段 AB的垂直平分線(xiàn)上, PA=6,則 PB= 6 . 【考點(diǎn)】 線(xiàn)段垂直平分線(xiàn)的性質(zhì). 【分析】 直接根據(jù)線(xiàn)段垂直平分線(xiàn)的性質(zhì)進(jìn)行解答 即可. 【解答】 解: ∵ 點(diǎn) P在線(xiàn)段 AB的垂直平分線(xiàn)上, PA=6, ∴PB=PA=6 . 故答案為: 6. 【點(diǎn)評(píng)】 本題考查的是線(xiàn)段垂直平分線(xiàn)的性質(zhì),熟知垂直平分線(xiàn)上任意一點(diǎn),到線(xiàn)段兩端點(diǎn)的距離相等是解答此題的關(guān)鍵. 21.( 2021?泰州)如圖, △ABC 中, AB+AC=6cm, BC的垂直平分線(xiàn) l與 AC相交于點(diǎn) D,則 △ABD的周長(zhǎng)為 6 cm. 【考點(diǎn)】 線(xiàn)段垂直平分線(xiàn)的性質(zhì). 【專(zhuān)題】 數(shù)形結(jié)合. 【分析】 根據(jù)中垂線(xiàn)的性質(zhì),可得 DC=DB,繼而可確定 △ABD 的周長(zhǎng). 【解答】 解: ∵l 垂直平分 BC, ∴DB=D C, ∴△ABD 的周長(zhǎng) =AB+AD+BD=AB+AD+DC=AB+AC=6cm. 故答案為: 6. 【點(diǎn)評(píng)】 本題考查了線(xiàn)段垂直平分線(xiàn)的性質(zhì),注意掌握線(xiàn)段垂直平分線(xiàn)上任意一點(diǎn),到線(xiàn)段 兩端點(diǎn)的距離相等. 22.( 2021?欽州)如圖, △ABC 中, ∠A=40176。 ﹣ 50176。 ﹣ ∠A ) =65176。 , ∴∠ABD=∠A=50176。 ﹣ 40176。 , ∴∠A=∠ABD , ∵∠ADE=40176。 . 【考點(diǎn)】 線(xiàn)段垂直平分線(xiàn)的性質(zhì);等腰三角形的性質(zhì). 【分析】 根據(jù)線(xiàn)段垂直平分線(xiàn)求出 AD=BD,推出 ∠A=∠ABD=50
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1