【摘要】第2課時(shí)對數(shù)函數(shù)的圖象與性質(zhì)通過對數(shù)函數(shù)的圖象及其變換,觀察發(fā)現(xiàn)對數(shù)函數(shù)的性質(zhì),提高識圖能力.對數(shù)函數(shù)y=logax(a>1)與指數(shù)函數(shù)y=ax(a>1)的性質(zhì)比較函數(shù)y=axy=logax圖象性質(zhì)定義域R定義域(0,+∞)值域(0,+∞)值域R過
2024-12-02 18:28
【摘要】對數(shù)函數(shù)(2)教學(xué)目標(biāo):1.掌握對數(shù)函數(shù)的性質(zhì),能初步運(yùn)用性質(zhì)解決問題.2.運(yùn)用對數(shù)函數(shù)的圖形和性質(zhì).3.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.教學(xué)重點(diǎn):對數(shù)函數(shù)性質(zhì)的應(yīng)用.教學(xué)難點(diǎn):對數(shù)函數(shù)圖象的變換.教學(xué)過程:一、問題情境1.復(fù)習(xí)對數(shù)函數(shù)的定義及性質(zhì).2.問題:如何解
2024-12-02 04:43
【摘要】對數(shù)函數(shù)(1)教學(xué)目標(biāo):1.掌握對數(shù)函數(shù)的概念,熟悉對數(shù)函數(shù)的圖象和性質(zhì);2.通過觀察對數(shù)函數(shù)的圖象,發(fā)現(xiàn)并歸納對數(shù)函數(shù)的性質(zhì);3.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想以及分析推理的能力.教學(xué)重點(diǎn):理解對數(shù)函數(shù)的定義,初步掌握對數(shù)函數(shù)的圖象和性質(zhì).教學(xué)難點(diǎn):底數(shù)a對圖象的影響及對對數(shù)函數(shù)性質(zhì)的作用.教學(xué)過程:
【摘要】第2課時(shí)對數(shù)的運(yùn)算性質(zhì)1.理解對數(shù)的運(yùn)算性質(zhì),能靈活準(zhǔn)確地進(jìn)行對數(shù)式的化簡與計(jì)算;2.了解對數(shù)的換底公式,并能將一般對數(shù)式轉(zhuǎn)化為自然對數(shù)或常用對數(shù),從而進(jìn)行簡單的化簡與證明.1.對數(shù)的運(yùn)算法則如果a>0,且a≠1,M>0,N>0,n∈R,那么:指數(shù)的運(yùn)算法則?對數(shù)的運(yùn)算法則①am·
2024-12-02 13:35
【摘要】3.2對數(shù)函數(shù)3.2.1對數(shù)第1課時(shí)對數(shù)的概念1.理解對數(shù)的概念.2.能熟練地進(jìn)行指數(shù)式與對數(shù)式的互化.3.掌握常用對數(shù)與自然對數(shù)的定義.4.了解對數(shù)恒等式.1.對數(shù)的概念一般地,如果ab=N(a>0,a≠1),那么數(shù)b叫做以a為底N的對數(shù),記為logaN=b,其中a叫做
【摘要】【金版學(xué)案】2021-2021年高中數(shù)學(xué)對數(shù)函數(shù)及其應(yīng)用學(xué)案蘇教版必修11.一般地,把函數(shù)y=logax(a>0且a≠1)叫做對數(shù)函數(shù),其中x是自變量,函數(shù)的定義域是(0,+∞),值域是(-∞,+∞).2.對數(shù)函數(shù)y=logax(a>0,a≠1)的圖象與性質(zhì).y=lo
2024-12-02 18:29
【摘要】中小學(xué)課件站高中數(shù)學(xué)必修1中小學(xué)課件站情境問題:對數(shù)函數(shù)的定義:函數(shù)y=logax(a>0,a≠1)叫做對數(shù)函數(shù).對數(shù)函數(shù)的定義域?yàn)?0,+?),值域?yàn)镽.對數(shù)函數(shù)的圖象和性質(zhì):對數(shù)函數(shù)的圖象恒過點(diǎn)(1,0),當(dāng)0<a<1時(shí),對數(shù)函數(shù)在(0,+?)
2024-12-01 22:20
【摘要】第三章第2課時(shí)對數(shù)函數(shù)的應(yīng)用一、選擇題1.已知函數(shù)f(x)=lg1-x1+x,若f(a)=12,則f(-a)等于()A.12B.-12C.2D.-2[答案]B[解析]f(a)=lg1-a1+a=12,f(-a)=lg(1-a1+a)-1=-lg
2024-12-01 23:55
【摘要】對數(shù)函數(shù)(3)教學(xué)目標(biāo):1.進(jìn)一步理解對數(shù)函數(shù)的性質(zhì),能運(yùn)用對數(shù)函數(shù)的相關(guān)性質(zhì)解決對數(shù)型函數(shù)的常見問題.2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.教學(xué)重點(diǎn):對數(shù)函數(shù)性質(zhì)的應(yīng)用.教學(xué)難點(diǎn):對數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.教學(xué)過程:一、問題情境1.復(fù)習(xí)對數(shù)函數(shù)
【摘要】對數(shù)函數(shù)導(dǎo)學(xué)案一、知識點(diǎn)提要函數(shù)叫對數(shù)函數(shù),其定義域?yàn)椋?,+∞),值域是R.結(jié)合圖象,熟練掌握對數(shù)函數(shù)的性質(zhì).(3)熟記以及的圖象及相互關(guān)系,并通過圖象掌握對數(shù)的單調(diào)性,注意底對圖象的影響.(4)比較兩對數(shù)值的大小時(shí),應(yīng)根據(jù)對數(shù)函數(shù)的單調(diào)性,對照對數(shù)函數(shù)的圖象進(jìn)行判斷.二、重點(diǎn)難點(diǎn)突破(1)對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù),學(xué)習(xí)時(shí)要互相對照、
2025-06-10 23:29
【摘要】中小學(xué)課件站高中數(shù)學(xué)必修1中小學(xué)課件站情境問題:在細(xì)胞分裂問題中,細(xì)胞個(gè)數(shù)y是分裂次數(shù)x的指數(shù)函數(shù)y=,知道x的值(輸入值是分裂的次數(shù)),就能求出y的值(輸出值是細(xì)胞個(gè)數(shù)).(1)用含有y的代數(shù)式表示x,如何表達(dá)?x=log2y.(2)上述關(guān)系式中,x是y的函數(shù)嗎?
【摘要】對數(shù)函數(shù)(二)課時(shí)目標(biāo)..1.設(shè)g(x)=?????exxlnxx,則g(g(12))=________.2.下列各組函數(shù)中,表示同一函數(shù)的是________.(填序號)①y=x2和y=(x)2;②|y|=|x|和y3=x3;③y=logax2和
2024-12-01 23:27
2024-12-02 00:26
【摘要】學(xué)科:數(shù)學(xué)課題:對數(shù)函數(shù)(二)教學(xué)目標(biāo)(三維融通表述):1.復(fù)習(xí)鞏固對數(shù)函數(shù)的定義、圖像、性質(zhì);2.利用對數(shù)函數(shù)的性質(zhì)解決相關(guān)問題;3.通過比較、對照的方法,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想方法.教學(xué)重點(diǎn):掌握對數(shù)函數(shù)的圖象和性質(zhì).教學(xué)難點(diǎn):對數(shù)函數(shù)的圖象和性質(zhì)及應(yīng)用.教學(xué)過程教學(xué)環(huán)節(jié)問題
2024-12-09 06:38