【摘要】.BCAOA.OBCA.OBC.BC.2、(1)判別下列各圖形中的角是不是圓周角,并說明理由。(2)指出圖中的圓周角。圖中的圓周角是_∠OAB∠OBA∠OAC∠OCA∠BAC1、什么樣的角是圓周角?圓周
2024-11-27 10:44
【摘要】九年級數(shù)學(xué)(下)第三章圓3.圓周角和圓心角的關(guān)系(2)圓周角定理11、一條弧所對的圓心角等于_______,所對的圓周角等于_______。2、一弦分圓成兩部分,其中一部分是另一部分的4倍,則這弦所對的圓周角度數(shù)為________________。33、如圖,在⊙O中,∠BAC=32
2024-08-12 17:24
【摘要】第28章圓第三節(jié)圓周角定理岷江東路學(xué)校王萍請你說一說:?答:頂點在圓心的角叫圓心角..OBC1.當球員在B,D,E處射門時,他所處的位置對球門AC分別形成三個張角∠ABC,∠ADC,∠AEC.BACDE生活實
2024-11-25 01:34
【摘要】圓周角和圓心角的關(guān)系(1)一、舊知回放:?.OBC答:相等.答:頂點在圓心的角叫圓心角.度數(shù)的關(guān)系?B3、下列命題是真命題的是()①垂直弦的直徑平分這條弦②相等的圓心角所對的弧相等③圓既是軸對稱圖形,還是中心對稱圖形A①②B①③
【摘要】......知識點三:弧、弦、圓心角與圓周角1、圓心角定義:頂點在的角叫做圓心角2.在同圓或等圓中,弧、弦、圓心角之間的關(guān)系:兩個圓心角相等圓心角所對的弧(都是優(yōu)弧或都是劣弧)相等圓心角所對的弦相等3、一個角是
2025-03-28 00:01
【摘要】圓周角和圓心角的關(guān)系(1)圓周角定理1、圓心角的定義?2、在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等頂點在圓心的角為圓心角一、舊知回顧:當圓心角的頂點發(fā)生變化時,這個角的位置有哪幾種情況?圓周角:像(圖二)這樣的角∠BAC我們稱為圓周角.OBC二、探索新知:
2024-08-03 05:53
【摘要】民樂縣第二中學(xué)王愛萍回顧與思考AOBN100o,1、如圖在⊙O中,∠AOB=100o,則AB的度數(shù)為______ANB的度數(shù)為______?!?60o在射門游戲中,球員射中球門的難易與他所處的位
2024-12-11 16:28
【摘要】圓周角與圓心角的關(guān)系(2)編寫:審閱:學(xué)習目標:1.掌握圓周角定理幾個推論的內(nèi)容. 2.會熟練運用推論解決問題.教學(xué)過程:1、揭示目標在教師的指導(dǎo)下了解本節(jié)課的學(xué)習目標2、自學(xué)質(zhì)疑1.復(fù)習回顧:(1)什么是圓周角
2024-08-28 09:32
【摘要】圓周角和圓心角的練習題一、選擇題1.圓周角是24°,則它所對的弧是________A.12°;B.24°;C.36°;D.48°.2.在⊙O中,∠AOB=84°,則弦AB所對的圓周角是________A.42°;B.138°;C.84°;D.42°或138°.
【摘要】......ê1.()如圖,線段AB是⊙O的直徑,弦CD丄AB,∠CAB=20°,則∠AOD等于( ?。〢. 160° B.150° C.140° D. 120°考點:
2025-06-22 01:55
【摘要】ê1.()如圖,線段AB是⊙O的直徑,弦CD丄AB,∠CAB=20°,則∠AOD等于( )A. 160° B.150° C.140° D. 120°考點: 圓周角定理;垂徑定理.菁優(yōu)網(wǎng)版權(quán)所有專題: 圓.分析: 利用垂徑定理得出=,進而求出∠BOD=40°,再利用鄰補角的性質(zhì)得出答案.解答: 解:
2025-06-22 00:17
【摘要】 《圓周角與圓心角的關(guān)系》說課稿 今天我說課的內(nèi)容是北師大版九年級數(shù)學(xué)(下冊)第三章第三節(jié)《圓周角和圓心角的關(guān)系》的第一課時。下面從教材分析、教學(xué)方法、學(xué)法指導(dǎo)、教學(xué)過程、板書設(shè)計等五個方...
2025-04-03 12:24
【摘要】OABC圓周角和圓心角的關(guān)系頂點在圓心的角叫圓心角.,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。.OBC憶一憶若圓心角的頂點位置發(fā)生改變,可能出現(xiàn)哪些情形?·····想一想在射門游
【摘要】24.弧、弦、圓心角01:基礎(chǔ)題知識點1:圓心角的概念及其計算1.下面圖形中的角是圓心角的是()ABCD2.已知⊙O的半徑為5cm,弦AB的長為5cm,則弦AB所對的圓心角∠AOB=.知識點2:弧、弦、圓心角之間的關(guān)系3.下列說法正確的是()A.相等的圓心角所對的弧相等B.在同圓中,等弧所對的圓心角相
【摘要】圓周角和圓心角的關(guān)系(1);;、歸納等數(shù)學(xué)思想方法.在射門游戲中(如圖),球員射中球門的難易程度與他所處的位置B對球門AC的張角(∠ABC)有關(guān).如圖所示,當球員在B,D,E處射門時,他所處的位置對球門AC分別成三個張角∠ABC,∠ADC,∠AEC這三個角的大小,有什么關(guān)系?
2025-01-21 17:37