【摘要】二次函數(shù)y=ax2+bx+c(a≠0)的圖象2知識與技能:1.學(xué)生掌握y=ax2+c與y=ax2的圖象在平面直角坐標(biāo)系中的位置特點(diǎn)及移動(dòng)方法;2.學(xué)生掌握y=ax2+c的圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo);3過程與方法:通過比較拋物線的相互關(guān)系,培養(yǎng)學(xué)生觀察、分析、歸納、總結(jié)的能力;滲透數(shù)形結(jié)
2024-11-25 00:05
【摘要】二次函數(shù)y=ax2+k圖象復(fù)習(xí)二次函數(shù)y=ax2的圖象是什么形狀呢?什么確定y=ax2的性質(zhì)?通常怎樣畫一個(gè)函數(shù)的圖象?我們來畫最簡單的二次函數(shù)y=2x2的圖象。還記得如何用描點(diǎn)法畫一個(gè)函數(shù)的圖象嗎?x…-2-1012…
【摘要】二次函數(shù)y=ax2+bx+c的圖象和性質(zhì)(2)在同一坐標(biāo)系中畫出下列函數(shù)的圖象:222)1(3;23;3?????xyxyxyoyx23xy?函數(shù)的圖象函數(shù)的圖象232??xy函數(shù)
2024-11-26 04:09
【摘要】探究在同一坐標(biāo)系中畫出二次函數(shù)的圖象,并考慮它們的開口方向、對稱軸和頂點(diǎn).x···-3-2-10123······
2024-11-25 01:22
【摘要】二次函數(shù)的圖象和性質(zhì)二次函數(shù)y=a(x-h)的圖象和性質(zhì)(2)倍速課時(shí)學(xué)練探究畫出二次函數(shù)的圖象,并考慮它們的開口方向、對稱軸和頂點(diǎn).x·&
【摘要】的圖象與性質(zhì)axy2?二次函數(shù)的定義:函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)叫做x的二次函數(shù)思考:你認(rèn)為判斷二次函數(shù)的關(guān)鍵是什么?判斷一個(gè)函數(shù)是否是二次函數(shù)的關(guān)鍵是:看二次項(xiàng)的系數(shù)是否為0.練習(xí):若函數(shù)y=(m2+3m-4)x2+(m+2)x+3m是x的二次函數(shù),則m______探究1:
2024-11-25 04:29
【摘要】-22-2-4-64-4二次函數(shù)y=a(x-h)2的圖象復(fù)習(xí)二次函數(shù)y=ax2和y=ax2+k的圖象是一條拋物線。y=ax2和y=ax2+k的圖象是什么形狀?y=ax2的性質(zhì)是什么?向上對稱軸頂點(diǎn)坐標(biāo)對稱軸左側(cè)y隨x增大
【摘要】二次函數(shù)y=ax2的圖象和性質(zhì)xy一.平面直角坐標(biāo)系:1.有關(guān)概念:x(橫軸)y(縱軸)o第一象限第二象限第三象限第四象限Pab(a,b)2.平面內(nèi)點(diǎn)的坐標(biāo):3.坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對是:一一對應(yīng).坐標(biāo)平面內(nèi)的任意一點(diǎn)M,都有
2024-11-25 23:43
【摘要】1二次函數(shù)y=a(x-h)2的圖象2?在同一坐標(biāo)系中作出二次函數(shù)y=3x2和y=3(x-1)2的圖象.3觀察圖象,回答問題?(1)函數(shù)y=3(x-1)2的圖象與y=3x2的圖象有什么關(guān)系?它是軸對稱圖形嗎?它的對稱軸和頂點(diǎn)坐標(biāo)分別是什么?(2)x取哪些值時(shí),函數(shù)y=3(x
【摘要】§4二次函數(shù)性質(zhì)的再研究4.1二次函數(shù)的圖像學(xué)習(xí)導(dǎo)航學(xué)習(xí)目標(biāo)重點(diǎn)難點(diǎn)重點(diǎn):二次函數(shù)圖像變換及求解析式.難點(diǎn):對圖像變換的理解及圖像的應(yīng)用.新知初探·思維啟動(dòng)1.二次函數(shù)的定義及解析式(1)二次函數(shù)的概念函數(shù)__________________
2024-11-13 02:28
【摘要】二次函數(shù)y=ax2+bx+c的圖象和性質(zhì)(2)1.對于任何實(shí)數(shù)h,拋物線y=(x-h)2與拋物線y=x2的相同2.將拋物線y=-2x2向左平移一個(gè)單位,再向右平移3個(gè)單位得拋物線解析式為.y=3(x-8)2最小值為.方向,大小y=-
2024-11-25 23:05
【摘要】-222464-48212yx?22yx?2yx?(第3課時(shí))例3(1)畫出函數(shù)的圖象,解:作函數(shù)的圖象:??21112yx??????21112yx???
2024-11-25 01:19
【摘要】-222464-48212yx?22yx?2yx?(第2課時(shí))探究畫出二次函數(shù)的圖象,并考慮它們的開口方向、對稱軸和頂點(diǎn).x···-3-
【摘要】二次函數(shù)的圖像與性質(zhì)東廈中學(xué)紀(jì)傳?!顈=ax2+bx+c(a≠0)的性質(zhì):☆、增減性及對稱性:☆3.二次函數(shù)解析式的求法:一.拋物線y=ax2+bx+c(a≠0)的性質(zhì):a、b、c的代數(shù)式作用說明a1.a的正負(fù)決定拋物線開口方向;2.決定拋物線開口
【摘要】中考數(shù)學(xué)總復(fù)習(xí)第一輪二次函數(shù)的圖像與性質(zhì)陜西科技大學(xué)附屬中學(xué)蒙燕妮【課前熱身】的開口向__對稱軸是______.頂點(diǎn)坐標(biāo)是_________.
2024-11-26 02:30