【摘要】二次函數(shù)的圖象和性質(zhì)二次函數(shù)y=a(x-h)的圖象和性質(zhì)(2)倍速課時學(xué)練探究畫出二次函數(shù)的圖象,并考慮它們的開口方向、對稱軸和頂點.x·&
2024-11-25 00:05
【摘要】探究在同一坐標(biāo)系中畫出二次函數(shù)的圖象,并考慮它們的開口方向、對稱軸和頂點.x···-3-2-10123······
2024-11-25 01:22
【摘要】二次函數(shù)y=ax2+k圖象復(fù)習(xí)二次函數(shù)y=ax2的圖象是什么形狀呢?什么確定y=ax2的性質(zhì)?通常怎樣畫一個函數(shù)的圖象?我們來畫最簡單的二次函數(shù)y=2x2的圖象。還記得如何用描點法畫一個函數(shù)的圖象嗎?x…-2-1012…
【摘要】k的圖象與性質(zhì)axy2??y=ax2(a≠0)a0a0時,
2024-11-26 04:09
【摘要】4-22246-4810-2y=x2+1y=x2-1y=ax2(a≠0)a0a0圖象開口方向頂點坐標(biāo)對稱軸增減性最值xyOyxO向上向下(0,0)(0,0)y軸
2024-11-26 02:30
【摘要】二次函數(shù)y=ax2的圖象和性質(zhì)xy一.平面直角坐標(biāo)系:1.有關(guān)概念:x(橫軸)y(縱軸)o第一象限第二象限第三象限第四象限Pab(a,b)2.平面內(nèi)點的坐標(biāo):3.坐標(biāo)平面內(nèi)的點與有序?qū)崝?shù)對是:一一對應(yīng).坐標(biāo)平面內(nèi)的任意一點M,都有
2024-11-25 23:05
【摘要】中考數(shù)學(xué)總復(fù)習(xí)第一輪二次函數(shù)的圖像與性質(zhì)陜西科技大學(xué)附屬中學(xué)蒙燕妮【課前熱身】的開口向__對稱軸是______.頂點坐標(biāo)是_________.
【摘要】二次函數(shù)y=ax2+bx+c(a≠0)的圖象2知識與技能:1.學(xué)生掌握y=ax2+c與y=ax2的圖象在平面直角坐標(biāo)系中的位置特點及移動方法;2.學(xué)生掌握y=ax2+c的圖象的開口方向、對稱軸、頂點坐標(biāo);3過程與方法:通過比較拋物線的相互關(guān)系,培養(yǎng)學(xué)生觀察、分析、歸納、總結(jié)的能力;滲透數(shù)形結(jié)
【摘要】-22-2-4-64-4二次函數(shù)y=a(x-h)2的圖象復(fù)習(xí)二次函數(shù)y=ax2和y=ax2+k的圖象是一條拋物線。y=ax2和y=ax2+k的圖象是什么形狀?y=ax2的性質(zhì)是什么?向上對稱軸頂點坐標(biāo)對稱軸左側(cè)y隨x增大
【摘要】二次函數(shù)的圖象和性質(zhì)二次函數(shù)倍速課時學(xué)練如圖:正方體的六個面全是全等的正方形如圖,設(shè)正方體的棱長為x,表面積為y.y=6x2①顯然對于x的每一個值,y都有一個對應(yīng)值,即y是x的函數(shù),它們具體的關(guān)系可以表示為倍速課時學(xué)練問題1多邊形的對角線數(shù)d與邊數(shù)n
2024-11-26 02:31
【摘要】第一篇:=a(x-h)2+k的圖像和性質(zhì)教案 =a(x-h(huán))2+k的圖像和性質(zhì) 一、教學(xué)內(nèi)容 二次函數(shù)函數(shù)y=a(x-h(huán))2+k的圖像和性質(zhì) 二、教材分析 二次函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念...
2024-10-24 11:02
【摘要】的圖象與性質(zhì)h)-a(xy2?y=ax2+ka0a0圖象開口對稱性頂點增減性回顧:二次函數(shù)y=ax2+k的性質(zhì)開口向上開口向下|a|越大,開口越小關(guān)于y軸對稱頂點是最低點頂點是最高點當(dāng)x0時,y隨x的增大而減小
【摘要】二次函數(shù)的應(yīng)用回顧:二次函數(shù)y=ax2+bx+c的性質(zhì)y=ax2+bx+c(a≠0)a0a0開口方向頂點坐標(biāo)對稱軸增減性極值向上向下在對稱軸的左側(cè),y隨著x的增大而減小。在對稱軸的右側(cè),y隨著x的增大而增大。在對稱軸的左側(cè),y隨著x的增
【摘要】的圖象與性質(zhì)axy2?二次函數(shù)的定義:函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)叫做x的二次函數(shù)思考:你認(rèn)為判斷二次函數(shù)的關(guān)鍵是什么?判斷一個函數(shù)是否是二次函數(shù)的關(guān)鍵是:看二次項的系數(shù)是否為0.練習(xí):若函數(shù)y=(m2+3m-4)x2+(m+2)x+3m是x的二次函數(shù),則m______探究1:
2024-11-25 04:29
【摘要】y=ax2+bx+c的圖象與性質(zhì)回顧:二次函數(shù)y=a(x-h)2+k的性質(zhì)y=a(x-h)2+k(a≠0)a0ah時