【摘要】湖南省邵陽(yáng)市隆回二中選修2-2學(xué)案導(dǎo)數(shù)及其應(yīng)用:1.1.2導(dǎo)數(shù)的概念導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】1.了解瞬時(shí)速度、瞬時(shí)變化率的概念;2.理解導(dǎo)數(shù)的概念,知道瞬時(shí)變化率就是導(dǎo)數(shù),體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵;3.會(huì)求函數(shù)在某點(diǎn)的導(dǎo)數(shù)?!咀灾鲗W(xué)習(xí)】(認(rèn)真自學(xué)課本P4-6)探究一:瞬時(shí)速度:?jiǎn)栴}1:我們把物體在某一時(shí)刻的
2024-11-23 20:35
【摘要】湖南省邵陽(yáng)市隆回二中選修2-2學(xué)案導(dǎo)數(shù)及其應(yīng)用:1.1.1變化率問題導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】,經(jīng)歷運(yùn)用數(shù)學(xué)描述和刻畫現(xiàn)實(shí)世界的過程。體會(huì)數(shù)學(xué)的博大精深以及學(xué)習(xí)數(shù)學(xué)的意義。,為建立瞬時(shí)變化率和導(dǎo)數(shù)的數(shù)學(xué)模型提供豐富的背景。【自主學(xué)習(xí)】(認(rèn)真自學(xué)課本P2-3)探究一:氣球膨脹率問題提出:我們都吹過氣球回憶一下吹氣球的過
2024-11-23 23:14
【摘要】湖南省邵陽(yáng)市隆回二中選修2-2學(xué)案推理與證明數(shù)學(xué)歸納法(2)【學(xué)習(xí)目標(biāo)】1.了解數(shù)學(xué)歸納法的原理,并能以遞推思想作指導(dǎo),理解數(shù)學(xué)歸納法的操作步驟;2.能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題,并能嚴(yán)格按照數(shù)學(xué)歸納法證明問題的格式書寫;3.數(shù)學(xué)歸納法中遞推思想的理解.【自主學(xué)習(xí)】復(fù)習(xí)1:數(shù)學(xué)歸納
【摘要】湖南省邵陽(yáng)市隆回二中選修2-2學(xué)案復(fù)數(shù)的概念【學(xué)習(xí)目標(biāo)】1.復(fù)數(shù)的概念.2.探索過程的組織和恰當(dāng)引導(dǎo).【自主學(xué)習(xí)】(認(rèn)真自學(xué)課本P102—103)1.復(fù)數(shù)的概念我們把集合C={a+bi|a,b∈R}中的數(shù),形如的數(shù)叫做復(fù)數(shù),其中i叫做虛數(shù)單位.全體復(fù)數(shù)所成的集合C叫
【摘要】湖南省邵陽(yáng)市隆回二中選修2-2學(xué)案導(dǎo)數(shù)及其應(yīng)用:基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則(2)導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】在掌握基本初等函數(shù)導(dǎo)數(shù)公式的基礎(chǔ)上,理解并掌握復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求簡(jiǎn)單的復(fù)合函數(shù)的導(dǎo)數(shù)?!咀灾鲗W(xué)習(xí)】(認(rèn)真自學(xué)課本P16-17)一、復(fù)習(xí)與思考:1、基本初等函數(shù)的導(dǎo)數(shù)公式有哪些?導(dǎo)數(shù)的四則運(yùn)算法則是什么?
【摘要】湖南省邵陽(yáng)市隆回二中選修2-2學(xué)案推理與證明析法(2)【學(xué)習(xí)目標(biāo)】1.會(huì)用分析法證明問題;了解分析法的思考過程.2.根據(jù)問題的特點(diǎn),結(jié)合分析法的思考過程、特點(diǎn),選擇適當(dāng)?shù)淖C明方法.【自主學(xué)習(xí)】(閱讀教材P86—P88,獨(dú)立完成下列問題)問題:如何證明基本不等式(0,0)2ababab????
2024-11-23 19:35
【摘要】湖南省邵陽(yáng)市隆回二中選修2-2學(xué)案復(fù)數(shù)除運(yùn)算【學(xué)習(xí)目標(biāo)】1.掌握復(fù)數(shù)代數(shù)形式的乘、除運(yùn)算;2.復(fù)數(shù)的除法運(yùn)算.【自主學(xué)習(xí)】(認(rèn)真自學(xué)課本P109—111)任務(wù)1:閱讀教材,理解下列問題:1.復(fù)數(shù)的乘法設(shè)z1=a+bi,z2=c+di是任意兩個(gè)復(fù)數(shù),那么它們的積(a+b
2024-12-09 06:26
【摘要】湖南省邵陽(yáng)市隆回二中選修2-2學(xué)案導(dǎo)數(shù)及其應(yīng)用:基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則(1)導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】1.熟練掌握基本初等函數(shù)的導(dǎo)數(shù)公式;2.掌握導(dǎo)數(shù)的四則運(yùn)算法則;3.能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù).?!咀灾鲗W(xué)習(xí)】(認(rèn)真自學(xué)課本P14-15)一、復(fù)習(xí)與思考:
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)導(dǎo)數(shù)學(xué)案2新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時(shí)感悟【學(xué)習(xí)目標(biāo)】1.掌握導(dǎo)數(shù)的概念,導(dǎo)數(shù)公式及計(jì)算,導(dǎo)數(shù)在函數(shù)中的應(yīng)用。能夠用導(dǎo)數(shù)解決生活中的優(yōu)化問題。2.掌握定積分的概念,微積分基本定理及定積分的應(yīng)用。【學(xué)習(xí)重點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用?!緦W(xué)習(xí)難點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中
2024-11-23 20:37
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)教案導(dǎo)數(shù)的概念及計(jì)算學(xué)案新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時(shí)感悟?qū)W習(xí)目標(biāo):1、了解導(dǎo)數(shù)概念的實(shí)際背景。2、理解導(dǎo)數(shù)的幾何意義.3、能根據(jù)導(dǎo)數(shù)的定義求函數(shù)xyxyxyxycy?????,1,,,2的導(dǎo)數(shù)。4、能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則
2024-11-23 17:30
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)導(dǎo)數(shù)學(xué)案1新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時(shí)感悟【學(xué)習(xí)目標(biāo)】1.掌握導(dǎo)數(shù)的概念,導(dǎo)數(shù)公式及計(jì)算,導(dǎo)數(shù)在函數(shù)中的應(yīng)用。能夠用導(dǎo)數(shù)解決生活中的優(yōu)化問題。2.掌握定積分的概念,微積分基本定理及定積分的應(yīng)用。【學(xué)習(xí)重點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用?!緦W(xué)習(xí)難點(diǎn)】導(dǎo)數(shù)在研究函
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)變化率問題與導(dǎo)數(shù)的概念學(xué)案新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時(shí)感悟【學(xué)習(xí)目標(biāo)】1.理解平均變化率與導(dǎo)數(shù)的概念;了解平均變化率的幾何意義、瞬時(shí)速度、瞬時(shí)變化率的概念;會(huì)求函數(shù)在某點(diǎn)處附近的平均變化率及導(dǎo)數(shù)。,推出導(dǎo)數(shù)的概念,理解導(dǎo)數(shù)的內(nèi)涵。?!緦W(xué)習(xí)重點(diǎn)】平均變化
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)導(dǎo)數(shù)的綜合應(yīng)用學(xué)案新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時(shí)感悟【學(xué)習(xí)目標(biāo)】通過學(xué)習(xí)進(jìn)一步理解導(dǎo)數(shù)的意義,會(huì)進(jìn)行導(dǎo)數(shù)的計(jì)算,掌握導(dǎo)數(shù)的應(yīng)用:求切線方程,判斷函數(shù)的單調(diào)性,求函數(shù)的極值與最值?!緦W(xué)習(xí)重點(diǎn)】導(dǎo)數(shù)的應(yīng)用【學(xué)習(xí)難點(diǎn)】導(dǎo)數(shù)的應(yīng)用學(xué)習(xí)方向一、回顧復(fù)習(xí):
【摘要】湖南省邵陽(yáng)市隆回二中選修2-2學(xué)案復(fù)數(shù)3.2.1復(fù)數(shù)代數(shù)形式的加、減運(yùn)算及其幾何意義【學(xué)習(xí)目標(biāo)】1.掌握復(fù)數(shù)代數(shù)形式的加、減運(yùn)算;2.復(fù)數(shù)加、減法的幾何意義及利用它們解決一些數(shù)學(xué)問題.【自主學(xué)習(xí)】(認(rèn)真自學(xué)課本P107—108)任務(wù)1:閱讀教材,理解下列問題:復(fù)數(shù)的加法設(shè)z1=a+bi,
【摘要】復(fù)數(shù)的概念一、學(xué)法建議:1、本節(jié)內(nèi)容概念較多,在理解的基礎(chǔ)上要牢記實(shí)數(shù)、虛數(shù)、純虛數(shù)與復(fù)數(shù)的關(guān)系,特別要明確:實(shí)數(shù)也是復(fù)數(shù),要把打復(fù)數(shù)與虛數(shù)加以區(qū)別,對(duì)于純虛數(shù)bi(b≠0,不要只記形式,要注意b≠0,如0i=0是實(shí)數(shù),而不是純虛數(shù),初學(xué)復(fù)數(shù)時(shí)最易在這里出錯(cuò)。2、復(fù)數(shù)z=a+bi(a、是由它實(shí)部和虛
2024-11-23 20:23