【摘要】數(shù)學(xué):“兩角差的余弦公式”教學(xué)設(shè)計(jì)一、教學(xué)內(nèi)容解析三角恒等變換處于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)和交匯點(diǎn)上,是前面所學(xué)三角函數(shù)知識(shí)的繼續(xù)與發(fā)展,是培養(yǎng)學(xué)生推理能力和運(yùn)算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎(chǔ)和出發(fā)點(diǎn),公式的發(fā)現(xiàn)和證明是本節(jié)課的重點(diǎn),也是難點(diǎn).由于和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,我們可以
2024-11-22 21:26
【摘要】a·b=|a||b|cosθ向量數(shù)量積的定義是?向量與自身的內(nèi)積為?兩個(gè)單位向量的數(shù)量積等于?向量長度的平方它們之間夾角的余弦函數(shù)值思考?yxoP1βP2α在直角坐標(biāo)系中,以原點(diǎn)為中心,單位長度為半徑作單位圓,以原點(diǎn)為頂點(diǎn),x軸為始邊分別作角任意α,β與單位圓交于
2024-11-21 15:05
【摘要】二倍角的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1、以兩角和正弦、余弦和正切公式為基礎(chǔ),推導(dǎo)二倍角正弦、余弦和正切公式2、二倍公式角的理解及其靈活運(yùn)用回憶兩角和的正弦、余弦、正切公式??????sinsincoscos)cos(?????????sincoscossin)sin(
2024-11-22 08:49
【摘要】兩角差的余弦公式說課稿?教材分析1、教材所處的地位和作用:《兩角差的余弦公式》是新課標(biāo)人教版數(shù)學(xué)必修四第三章第一課時(shí)的教學(xué)內(nèi)容,是本模塊第一章《三角函數(shù)》和第二章《平面向量》相關(guān)知識(shí)的延續(xù)和拓展。其中心任務(wù)是通過已學(xué)知識(shí),探索建立兩角差的余弦公式。它不僅是前面已學(xué)的誘導(dǎo)公式的推廣,也是后面其它和(差)角公式推導(dǎo)的基礎(chǔ)和核心,具有承前啟后的作用,是本章的重點(diǎn)內(nèi)容之一。
2025-04-19 12:53
【摘要】某城市的電視發(fā)射塔建在市郊的一座小山上.如圖所示,在地平面上有一點(diǎn)A,測(cè)得A、C兩點(diǎn)間距離約為60米,從A觀測(cè)電視發(fā)射塔的視角(∠CAD)為∠DAB=求AD長度.????思考:兩角差的余弦公式探究:如何用任意角α,β的正弦、余弦值表示?cos()???
2025-07-28 16:07
【摘要】兩角和與差的正弦、余弦和正切公式兩角差的余弦公式問題提出,我們學(xué)習(xí)了哪些基本的三角函數(shù)公式?30°,45°,60°等特殊角的三角函數(shù)值可以直接寫出,利用誘導(dǎo)公式還可進(jìn)一步求出150°,210°,315°等角的三角函
2024-11-22 12:17
【摘要】兩角和與差的三角函數(shù)公式的證明三角函數(shù)兩角和與差單位圓托勒密定理數(shù)學(xué)????利用單位圓方法證明sin(α+β)=…與cos(α+β)=…,是進(jìn)一步證明大部分三角函數(shù)公式的基礎(chǔ)。?1、sin(α+β)=sinαcosβ+cosαsinβ在笛卡爾坐標(biāo)系中以原點(diǎn)O為圓心作單位圓,在單位圓中作以下
2025-05-19 07:41
【摘要】兩角和與差的三角函數(shù)一、素質(zhì)教育目標(biāo)(一)知識(shí)教學(xué)點(diǎn)1.兩角和與差的正弦.2.兩角和與差的余弦.3.兩角和與差的正切.(二)能力訓(xùn)練點(diǎn)1.掌握兩角和與差的正弦、余弦、正切公式及其推導(dǎo).2.通過這些公式的推導(dǎo),使學(xué)生了解它們的內(nèi)在聯(lián)系,從而培養(yǎng)學(xué)生的邏輯推理能力.3.能靈活地應(yīng)用這些公式進(jìn)行計(jì)算
2024-11-21 12:22
【摘要】第三章三角恒等變形,第一頁,編輯于星期六:點(diǎn)三十五分。,§2兩角和與差的三角函數(shù)2.3兩角和與差的正切函數(shù),第二頁,編輯于星期六:點(diǎn)三十五分。,,自主學(xué)習(xí)梳理知識(shí),課前基礎(chǔ)梳理,第三頁,編輯于星期六:...
2024-10-22 18:58
【摘要】主講老師:余弦公式復(fù)習(xí)引入?)3045cos(15cos,2330cos,2245cosooooo?????由此我們能否得到初中時(shí)我們知道復(fù)習(xí)引入?30cos45cosoo呢是不是等于?猜想:?)3045cos(15cos,2330
2024-11-13 08:12
【摘要】[鍵入文字]課題三角函數(shù)基礎(chǔ),兩角和與差、倍角公式教學(xué)目標(biāo)能運(yùn)用兩角和與差公式、倍角公式解答問題。重點(diǎn)、難點(diǎn)公式的熟記和運(yùn)用。教學(xué)內(nèi)容任意角角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的正半軸重合,此時(shí)角的終邊在第幾象限,我們就說這個(gè)角是第幾象限的角,(1)中的角、角都是第一象限的角,(2)中角、角都是第二象限角.特別規(guī)定:如果角的終邊在坐標(biāo)軸
2025-06-28 02:42
【摘要】兩角和與差的三角函數(shù)測(cè)試【課內(nèi)四基達(dá)標(biāo)】一、選擇題sinαsinβ+cosαcosβ=0,那么sinαcosα+sinβcosβ的值等于()C.222.(°+°)72log的值是()B.77f(x)=
2024-12-04 07:39
【摘要】不查表,求cos(–375°)的值.解:cos(–375°)=cos375°=cos(360°+15°)=cos15°1.15°能否寫成兩個(gè)特殊角的和或差的形式?2.
2024-11-13 23:32
【摘要】《兩角和與差的余弦公式》教學(xué)設(shè)計(jì)一、教材地位和作用分析:兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,是正弦線、余弦線和誘導(dǎo)公式等知識(shí)的延伸,是后繼內(nèi)容二倍角公式、和差化積、積化和差公式的知識(shí)基礎(chǔ),對(duì)于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有重要的支撐作用。本課時(shí)主要講授平面內(nèi)兩點(diǎn)間距離公式、兩角和與差的余弦公式以及誘導(dǎo)公式。二、教學(xué)目標(biāo):1、知識(shí)目標(biāo)
2025-05-14 22:45
【摘要】兩角和與差的余弦公式【學(xué)習(xí)目標(biāo)】1、理解向量法推導(dǎo)兩角和與差的余弦公式,并能初步運(yùn)用解決具體問題;2、應(yīng)用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見.【學(xué)習(xí)重點(diǎn)難點(diǎn)】向量法推導(dǎo)兩角和與差的余弦公式【學(xué)習(xí)過程】(一)預(yù)習(xí)指導(dǎo)探究cos(α+β)≠cosα+cosβ
2024-11-24 01:05