【摘要】知識回顧1.圓的標準方程;2.點與圓的位置關(guān)系及其判斷。問題探究跡。的軌跡方程并判斷其軌,求點的距離之比為,,,與兩個定點:已知點 探究MAOM21)03()00(1圖形?表示什么)方程( 表示什么圖形?)方程:( 探究064220142122222??????????
2025-03-14 14:58
【摘要】4.圓的一般方程[提出問題]已知圓心(2,3),半徑為2.問題1:寫出圓的標準方程.提示:(x-2)2+(y-3)2=4.問題2:上述方程能否化為二元二次方程的形式?問題3:方程x2+y2-4x-6y+13=0是否表示圓?問題4
2024-11-21 17:04
【摘要】220DxEyFyx??????教學目標:能將圓的一般方程化為圓的標準方程從而求出圓心的坐標和半徑;能用待定系數(shù)法,由已知條件導出圓的方程.?教學重點:(1)能用配方法,由圓的一般方程求出圓心坐標和半徑;(2)能用待定系數(shù)法,由已知條件導出圓的方程.?教學難點:圓的一般方程的特點.?教學疑點:圓的一般方程中要加限制條件.
2025-08-08 18:23
【摘要】知識回顧直線的不同方程及適用范圍問題探究探究1:求下列直線的斜率以及與y軸的截距:-=--=--yxxy1451yx13312113(1)1=2(3);(2)。()探究2:(1)平面直角坐標系中的每一條直線都可以用一個關(guān)于x,y的二
2025-03-14 14:54
【摘要】知識回顧1.解析幾何的一般方法;2.平面幾何中圓的定義,確定圓的要素。問題探究?)的估計內(nèi)還是軌跡外在(,)請問點()的軌跡上?是否在(,)請問點(滿足什么方程?,中的,點的軌跡是什么?動,請問動點到原點的距離高于,中,動點)已知平面直角坐標系:(探究1)21(31)21(2)(5)(11MMyxyxPP
【摘要】圓的一般方程一、教材分析教材通過將二元二次方程x2+y2+Dx+Ey+F=0配方后化為(x+2D)2+(y+2F)2=4422FED??后只需討論D2+E2-4F>0、D2+E2-4F=0、D2+E2-4F<標準方程比較可知D2+E2-4F>0時,表示以(-2D,
2024-12-12 20:20
【摘要】圓的一般方程一、選擇題1.若直線3x+y+a=0過圓x2+y2+2x-4y=0的圓心,則a的值為()A.-1B.1C.3D.-3解析:選B∵圓x2+y2+2x-4y=0的圓心為(-1,2),∴3x+y+a過點(-1,2),即-3+2+a=0,
【摘要】解析幾何點到直線距離公式xyP0(x0,y0)O:0lAxByC???SR0022||AxByCdAB????Qd注意:化為一般式.圓的標準方程xyOCM(x,y)222)()(rbyax????圓心C(a
2024-11-21 19:47
【摘要】知識回顧1.圓的標準方程;2.圓的一般方程;3.點、直線、圓與圓的位置關(guān)系。問題探究所對對邊的一半。一邊的距離等于這條邊互相垂直,求證圓心到形的對角線:已知內(nèi)接于圓的四邊 探究1BACDOO’。,求證:相交于點、,, 上,且,在邊分別、中,點:等邊 自我檢測CPAPPBEADCACEB
2025-03-14 14:59
【摘要】平面A.研讀教材P40-P41:1.平面的概念;2.平面的畫法;3.平面的命名。1.為何教材描述幾何中點、直線、平面之間的位置關(guān)系采用了集合的相關(guān)符號“屬于”或“包含”?2.點與直線的位置關(guān)系及其表示;3.點與平面的位置關(guān)系及其表示;4.直線與平面的位置關(guān)系及其表示;5.
2025-03-14 14:29
【摘要】知識回顧1.圓的標準方程;2.圓的一般方程;3.點P0(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關(guān)系判斷;4.直線Ax+By+C=0與圓(x-a)2+(y–b)2=r2的位置關(guān)系。問題探究請求出公共弦長。的位置關(guān)系,若相交,與圓
【摘要】圓的一般方程思考:方程表示什么圖形?方程表示什么圖形?222410xyxy?????222460xyxy?????22(1)
2025-07-26 21:25
2024-11-21 03:39
【摘要】知識回顧1.圓的標準方程;2.圓的一般方程;3.點P0(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關(guān)系判斷。問題探究標。,請求其坐的位置關(guān)系,若有交點與圓試判斷直線,:,圓:?。┲本€(,請求其坐標。的位置關(guān)系,若有交點與圓判斷直線,試:,圓:?。┲本€(請求其坐標。,的位
【摘要】圓的一般方程214..222)()(rbyax????2222222rbbyyaaxx??????展開得整理得0)(2222222???????rbabyaxyx圓的標準方程可表示為一般地,022?????FEyDxyx.022確定圓的圓心和半徑思考:如何由?????FEyDxyx是否有限制?半徑的過程對參數(shù)思考:上
2025-06-08 23:39