【摘要】問題探究????。的通項公式試求數(shù)列,)(滿足:已知數(shù)列 探究nnnnnaanaaaa1211111?????????????。的通項公式),試求數(shù)列(已知,且中,:已知數(shù)列 探究nnnnnaaqqaaaa
2025-03-14 14:53
【摘要】知識回顧等比數(shù)列(G·P)1.定義2.通項公式問題探究滿足什么關系式?,,試問:三個數(shù)成等比數(shù)列,,,:已知 探究bGabGa1??結論?成立?你又能得到什么)是否() ?。??你據(jù)此就得到什么結論)是否成立?() ?。ǔ闪幔繛槭裁??是否成立?) ?。ㄊ堑缺葦?shù)列:已知 探究031
【摘要】第一頁,編輯于星期六:點三十四分。,2.4等比數(shù)列第一課時等比數(shù)列的概念及通項公式,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第四頁,編...
2024-10-22 18:53
【摘要】第一篇: 2.4等比數(shù)列 (一)教學目標 1`.知識與技能:理解等比數(shù)列的概念;掌握等比數(shù)列的通項公式;理解這種數(shù)列的模型應用. 2.過程與方法:通過豐富實例抽象出等比數(shù)列模型,經歷由發(fā)現(xiàn)幾個...
2024-11-05 04:12
【摘要】第一頁,編輯于星期六:點三十四分。,2.4等比數(shù)列第二課時等比數(shù)列的性質,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第四頁,編輯于星期六...
【摘要】知識回顧1.等比數(shù)列的定義;2.等比數(shù)列的通項公式;3.等比數(shù)列的中項公式;4.等比數(shù)列的下標公式。問題探究????。和項的前,請推導等比數(shù)列公比為,中,前項為:等比數(shù)列 探究nnnSnaqaa1)(其中 請你證明:,都不為,,且:如果 探究*nnnn
【摘要】知識回顧等比數(shù)列{an}的求和公式及推導方法。問題探究??也成等比數(shù)列。,,求證:,項和為的前:已知等比數(shù)列 探究142171471SSSSSSnann??等于多少?項的和,那么它前項的和等于,前項和等于:如果一個等比數(shù)列前 探究1550101052??證明。請間滿足怎樣的關系?并,,
2025-03-14 14:54
【摘要】等比數(shù)列第1課時等比數(shù)列1.理解等比數(shù)列的概念,明確“同一個常數(shù)”的含義.2.掌握等比數(shù)列的通項公式及其應用.3.會判定等比數(shù)列,了解等比數(shù)列在實際中的應用.1231.等比數(shù)列文字語言一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)
2024-11-21 17:05
【摘要】第二章數(shù)列§等比數(shù)列復習與提問:?1、等差數(shù)列的定義:定義的符號表示:?2、等差數(shù)列的通項公式:?3、等差中項:a,A,b成等差數(shù)列,則A=(a+b)/2an=a1+(n-1)d等差數(shù)列a
2024-11-25 03:13
【摘要】等比數(shù)列的前n項和教學過程導入新課師國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者.這個故事大家聽說過嗎?生知道一些,踴躍發(fā)言師“請在第一個格子里放上1顆麥粒,第二個格子里放上2顆麥粒,第三個格子里放上4顆麥粒,以此類推.每一個格子里放的麥粒都是前一個格子里放的麥粒的2倍.直到第64個
2024-11-23 21:23
【摘要】談一類遞推數(shù)列求通項公式的典型方法除了我們經常接觸的最基本的等差數(shù)列和等比數(shù)列之外,我們還經常遇到一類遞推數(shù)列求通項的問題.它的基本形式是:已知1a及遞推關系1nnapaq???((1)0)pqp??求na.其求解方法有多種,下面結合具體例子介紹三種較為典型的解法.題目:在數(shù)列{}na(不是常數(shù)數(shù)列)中,1122nn
2024-12-12 20:21
【摘要】等比數(shù)列的通項公式復習數(shù)列的有關概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)列的一般形式可以寫成:,1
2025-05-16 21:08
【摘要】等比數(shù)列的通項公式與求和典例分析【例1】在等比數(shù)列中,,,則它的公比_______,前項和_______.【例2】等差數(shù)列的前項和為,且,則.【例3】設等比數(shù)列的前項和為,若,則()A. B. C. D.【例4】設是公比為的等比數(shù)列,,令,若
2024-08-05 06:33
【摘要】等比數(shù)列復習:(1)什么叫等差數(shù)列?(2)等差數(shù)列的通項公式是什么?如果一個數(shù)列從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列.其表示為:an=a1+(n-1)d)2,(1????nddaann為常數(shù)(3)在等差數(shù)列{an}中,若m+n=p+q(m,n,p,q是正整數(shù)),
2025-01-09 16:31
【摘要】第一頁,編輯于星期六:點三十四分。,2.5等比數(shù)列的前n項和第一課時等比數(shù)列前n項和公式,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第四...
2024-10-22 18:54