【摘要】正、余弦定理綜合應(yīng)用(1)實(shí)際問題抽象概括示意圖數(shù)學(xué)模型推理演算數(shù)學(xué)模型的解實(shí)際問題的解還原說明實(shí)際問題應(yīng)用模型問題1.怎樣測量一個(gè)底部不能到達(dá)的建筑物的高度?如圖,在北京故宮的四個(gè)角上各矗立著一座角樓,如何通過測量,求得角樓的高度?
2024-11-21 23:32
【摘要】正余弦定理的應(yīng)用1、角的關(guān)系2、邊的關(guān)系3、邊角關(guān)系?180???CBAcbacba????,大角對大邊大邊對大角三角形中的邊角關(guān)系RCcBbAa2sinsinsin???CabbacBaccabAbccbacos2cos2cos2222222
2024-11-22 08:48
【摘要】正弦定理、余弦定理及其運(yùn)用?一、考綱解讀?二、正弦定理及其變形?三、余弦定理及其變形?四、實(shí)際應(yīng)用問題中的基本概念和術(shù)語?五、例題講解?六、高考題再現(xiàn)?七、小結(jié)本節(jié)課內(nèi)容目錄:一、考綱解讀:在課標(biāo)及《教學(xué)要求》中對正弦定理、余弦定理的要求均為理解(B)。在高考試題中
【摘要】1.3正弦定理、余弦定理的應(yīng)用學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入2020年10月12日,中國宣布了自己的探月計(jì)劃:中國將在2020年把“嫦娥一號”繞月衛(wèi)星送入太空,2020年實(shí)現(xiàn)發(fā)射軟著陸器登陸月球.路透社報(bào)道:中國將在2024年把人送上月球.
2024-11-22 08:11
【摘要】正、余弦定理應(yīng)用(2)例1.如果△A1B1C1的三個(gè)內(nèi)角的余弦值分別等于△A2B2C2的三個(gè)內(nèi)角的正弦值,則()(A)△A1B1C1和△A2B2C2都是銳角三角形(B)△A1B1C1和△A2B2C2都是鈍角三角形(C)△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形(D)△A1
【摘要】正弦定理、余弦定理的應(yīng)用(一)課時(shí)目標(biāo);、余弦定理解決生產(chǎn)實(shí)踐中的有關(guān)距離的問題.1.方位角:指從正北方向線按________方向旋轉(zhuǎn)到目標(biāo)方向線所成的水平角.如圖中的A點(diǎn)的方位角為α.2.計(jì)算不可直接測量的兩點(diǎn)間的距離是正弦定理和余弦定理的重要應(yīng)用之一.一、填空題1.如圖,A、B兩點(diǎn)間的距
2024-12-09 10:14
【摘要】正弦定理、余弦定理的應(yīng)用(二)課時(shí)目標(biāo)、余弦定理解決生產(chǎn)實(shí)踐中的有關(guān)高度的問題.、余弦定理及三角形面積公式解決三角形中的幾何度量問題.1.仰角和俯角:與目標(biāo)視線在同一鉛垂平面內(nèi)的水平視線和目標(biāo)視線的夾角,目標(biāo)視線在水平線____方時(shí)叫仰角,目標(biāo)視線在水平線____方時(shí)叫俯角.(如圖所示)2.已知△ABC的兩邊a
【摘要】§.余弦定理(1)一、問題提出?在三角形中,已知兩角及一邊,或已知兩邊及其中一邊的對角,可以利用正弦定理求其他的邊和角,那么,已知兩邊及其夾角,怎么求出此角的對邊呢?已知三邊,又怎么求出它的三個(gè)角呢?二、分析理解22222cos2cos2))((cAbcbABAABA
【摘要】正弦定理、余弦定理的應(yīng)用(1)教學(xué)目標(biāo):1.能熟練應(yīng)用正弦、余弦定理及相關(guān)公式解決三角形中的有關(guān)問題;2.能把一些簡單的實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,并能應(yīng)用正弦、余弦定理及相關(guān)的三角公式解決這些問題;3.通過復(fù)習(xí)、小結(jié),使學(xué)生牢固掌握兩個(gè)定理,應(yīng)用自如.教學(xué)重、難點(diǎn):能熟練應(yīng)用正弦、余弦定理及相關(guān)公式解決三角形的有關(guān)問
2024-11-23 21:43
【摘要】第一篇:數(shù)學(xué):正弦定理、余弦定理的應(yīng)用教案(蘇教版必修5) 您身邊的志愿填報(bào)指導(dǎo)專家 第5課時(shí):§正弦定理、余弦定理的應(yīng)用(1) 【三維目標(biāo)】: 一、知識與技能 ,并能應(yīng)用正弦定理、余弦...
2024-10-06 05:35
【摘要】正弦定理正弦定理回憶一下直角三角形的邊角關(guān)系?ABCcba222cba??Acasin?Bcbsin?Abatan????90BA兩等式間有聯(lián)系嗎?cBbAa??sinsin1sin?CCcBbAasinsinsin??即正弦定理,定理對任意
【摘要】正弦定理、余弦定理的應(yīng)用學(xué)案班級學(xué)號姓名一一、、學(xué)學(xué)習(xí)習(xí)目目標(biāo)標(biāo)1.會在各種應(yīng)用問題中,抽象成三角形,標(biāo)出已知量、未知量,確定三角形的方法;2.搞清利用解斜三角形可解決的各類應(yīng)用題的基本圖形和基本等量關(guān)系;3.理解各種應(yīng)用問題中的有關(guān)名詞、術(shù)語,如度、俯角、
2024-11-23 19:08
【摘要】12直角三角形中的邊角關(guān)系:CBAabc1、角的關(guān)系:A+B+C=180°A+B=C=90°2、邊的關(guān)系:a2+b2=c23、邊角關(guān)系:sinA=—=cosBsinB=—=cosAacbc復(fù)習(xí)3CBAabc
2025-01-09 16:31
【摘要】§.余弦定理(2)知識改變命運(yùn),勤奮成就未來.三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍。Abccbacos2222???Baccabcos2222???Cabbaccos2222???余弦定理22222
【摘要】余弦定理復(fù)習(xí)回顧RCcBbAa2sinsinsin???baCAB(1)已知三角形的兩角和任一邊,求其它兩邊和另一角;(2)已知三角形的兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其它的邊和角).第二種情況若知道的是大邊的對角,只有唯一的一組解;若給出的是小邊的對角,則結(jié)