【摘要】瞬時(shí)變化率曲線上一點(diǎn)處的切線平均變化率)(xf一般的,函數(shù)在區(qū)間上的平均變化率為],[21xx2121)()(xxxfxf??復(fù)習(xí)PQoxyy=f(x)割線切線T如何求曲線上一點(diǎn)的切線?切線.gsp
2024-11-21 20:20
【摘要】江蘇省建陵高級(jí)中學(xué)2020-2020學(xué)年高中數(shù)學(xué)瞬時(shí)變化率(曲線上一點(diǎn)處的切線)導(dǎo)學(xué)案(無(wú)答案)蘇教版選修1-1【學(xué)習(xí)任務(wù)】1.了解曲線的切線的概念.2.掌握求函數(shù)在某一點(diǎn)處切線的斜率.【課前預(yù)習(xí)】1、借助直尺,用割線逼近切線的方法作出下列曲線在點(diǎn)P處的切線:2、已知曲線2yx?上一點(diǎn)A(1,2
2024-11-24 00:31
2024-11-22 08:47
【摘要】PQoxyy=f(x)割線切線l如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱(chēng)為曲線的割線.yOxPQ●P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?●切線定義隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動(dòng),直線PQ在點(diǎn)P附近逼近曲線C,
2024-11-22 08:56
【摘要】導(dǎo)數(shù)是解決函數(shù)的最大值、最小值問(wèn)題的有力工具.導(dǎo)數(shù)的知識(shí)形成一門(mén)學(xué)科,就是我們通常所說(shuō)的微積分.微積分除了解決最大值、最小值問(wèn)題,還能解決一些復(fù)雜曲線的切線問(wèn)題.導(dǎo)數(shù)的思想最初是法國(guó)數(shù)學(xué)家費(fèi)馬(Fermat)為解決極大、極小問(wèn)題而引入的.但導(dǎo)數(shù)作為微分學(xué)中最主要概念,卻是英國(guó)科學(xué)家牛頓(Newton)和德國(guó)數(shù)學(xué)家萊布尼茲(Leibniz)分別在研究力學(xué)與
2024-11-21 07:49
【摘要】-導(dǎo)數(shù)1、平均變化率一般的,函數(shù)在區(qū)間上的平均變化率為)(xf][21,xx2121)()(xxxfxf??2、平均變化率是曲線陡峭程度的“數(shù)量化”,是一種粗略的刻畫(huà)練習(xí)1、已知函數(shù)分別計(jì)算在下列區(qū)間上
【摘要】PQoxyy=f(x)割線切線T)斜率無(wú)限趨限趨近點(diǎn)P處切,時(shí)0無(wú)限趨限當(dāng)(PQkx?))()(xxfxxfkPQ?????回顧設(shè)物體作直線運(yùn)動(dòng)所經(jīng)過(guò)的路程為s=f(t)。以t0為起始時(shí)刻,物體在?t時(shí)間內(nèi)的平均速度為
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)第三章第2課瞬時(shí)變化率—導(dǎo)數(shù)(曲線上一點(diǎn)處切線)教學(xué)案蘇教版選修1-1班級(jí):高二()班姓名:____________教學(xué)目標(biāo):1.理解并掌握曲線在某一點(diǎn)處的切線的概念;2.理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;3.理解切線概念的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)
2024-11-24 00:30
【摘要】-導(dǎo)數(shù)瞬時(shí)速度和瞬時(shí)加速度PQoxyy=f(x)(1)如何求割線的斜率?xxfxxfxxxxfxxfkPQ????????????)()()()()(復(fù)習(xí)回顧:PQoxyy=f(x)割線切線T(2)如何求切
2024-11-21 11:00
【摘要】.瞬時(shí)變化率曲線上一點(diǎn)處的切線教學(xué)設(shè)計(jì)引入問(wèn)題背景:本節(jié)課是高等代數(shù)微積分知識(shí)的基礎(chǔ),是導(dǎo)數(shù)概念產(chǎn)生過(guò)程。微積分是十七世紀(jì)由英國(guó)數(shù)學(xué)家牛頓、德國(guó)數(shù)學(xué)家萊布尼茨提出的,體現(xiàn)了變化過(guò)程中的極限思想,為學(xué)生以后微積分學(xué)習(xí)奠定基礎(chǔ)。矚慫潤(rùn)厲釤瘞睞櫪廡賴賃軔。教材分析:本節(jié)課是在學(xué)習(xí)了平均變化率后的一節(jié)課,讓學(xué)生體會(huì)由區(qū)間上的變化過(guò)渡到一點(diǎn)處的變化瞬時(shí)變化率,滲透微分思想。讓學(xué)生體會(huì)“局部
2025-04-19 12:10
【摘要】江蘇省建陵高級(jí)中學(xué)2020-2020學(xué)年高中數(shù)學(xué)瞬時(shí)變化率與瞬時(shí)加速度導(dǎo)學(xué)案(無(wú)答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1.了解在非常短時(shí)間內(nèi)的平均速度、平均加速度十分接近一個(gè)時(shí)刻的瞬時(shí)速度、瞬時(shí)加速度;【課前預(yù)習(xí)】1.設(shè)物體的運(yùn)動(dòng)規(guī)律是s=s(t),則物體在t到t+△t這段時(shí)間內(nèi)的平均速度為st=
2024-11-23 19:53
【摘要】瞬時(shí)變化率1、平均變化率一般的,函數(shù)在區(qū)間上的平均變化率為例1、已知函數(shù)分別計(jì)算在區(qū)間[-3,-1],[0,5]上及的平均變化率。由本例得到什么結(jié)論?一
2024-11-16 18:12
2024-11-15 05:50
2024-11-14 07:30
【摘要】普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(選修)1-1導(dǎo)數(shù)及其應(yīng)用(2)在經(jīng)營(yíng)某商品中,甲用5年時(shí)間掙到10萬(wàn)元,乙用5個(gè)月時(shí)間掙到2萬(wàn)元,如何比較和評(píng)價(jià)甲,乙兩人的經(jīng)營(yíng)成果?(1)在經(jīng)營(yíng)某商品中,甲掙到10萬(wàn)元,乙掙到2萬(wàn)元,如何比較和評(píng)價(jià)甲,乙兩人的經(jīng)營(yíng)成果?想一想本題說(shuō)明:△y與△t中僅比較一個(gè)量的變化是不行的
2025-01-09 15:51