【摘要】知識回顧1.解析幾何的一般方法;2.平面幾何中圓的定義,確定圓的要素。問題探究?)的估計內(nèi)還是軌跡外在(,)請問點()的軌跡上?是否在(,)請問點(滿足什么方程?,中的,點的軌跡是什么?動,請問動點到原點的距離高于,中,動點)已知平面直角坐標(biāo)系:(探究1)21(31)21(2)(5)(11MMyxyxPP
2024-11-21 03:40
【摘要】§4.1圓的方程圓的標(biāo)準(zhǔn)方程【課時目標(biāo)】1.用定義推導(dǎo)圓的標(biāo)準(zhǔn)方程,并能表達(dá)點與圓的位置關(guān)系.2.掌握求圓的標(biāo)準(zhǔn)方程的不同求法.1.設(shè)圓的圓心是A(a,b),半徑長為r,則圓的標(biāo)準(zhǔn)方程是________________,當(dāng)圓的圓心在坐標(biāo)原點時,圓的半徑為r,則圓的標(biāo)準(zhǔn)方程是________________.
2024-12-09 06:42
【摘要】第四章圓與方程本章教材分析上一章,學(xué)生已經(jīng)學(xué)習(xí)了直線與方程,知道在直角坐標(biāo)系中,直線可以用方程表示,通過方程,可以研究直線間的位置關(guān)系、直線與直線的交點坐標(biāo)、點到直線的距離等問題,對數(shù)形結(jié)合的思想方法有了初步體驗.本章將在上章學(xué)習(xí)了直線與方程的基礎(chǔ)上,學(xué)習(xí)在平面直角坐標(biāo)系中建立圓的代數(shù)方程,運用代數(shù)方法研究點與圓、直線與圓、圓與圓
2024-12-07 11:32
【摘要】知識回顧1.圓的標(biāo)準(zhǔn)方程;2.圓的一般方程;3.點、直線、圓與圓的位置關(guān)系。問題探究所對對邊的一半。一邊的距離等于這條邊互相垂直,求證圓心到形的對角線:已知內(nèi)接于圓的四邊 探究1BACDOO’。,求證:相交于點、,, 上,且,在邊分別、中,點:等邊 自我檢測CPAPPBEADCAC
2024-12-12 20:20
【摘要】圓的標(biāo)準(zhǔn)方程一、選擇題1.已知點P(3,2)和圓的方程(x-2)2+(y-3)2=4,則它們的位置關(guān)系為()A.在圓心B.在圓上C.在圓內(nèi)D.在圓外解析:選C∵(3-2)2+(2-3)2=2<4,∴點P在圓內(nèi).2.圓(x+1)2+(y-2)2=4的圓心、半徑是()
2024-12-12 07:03
【摘要】知識回顧1.圓的標(biāo)準(zhǔn)方程;2.點與圓的位置關(guān)系及其判斷。問題探究跡。的軌跡方程并判斷其軌,求點的距離之比為,,,與兩個定點:已知點 探究MAOM21)03()00(1圖形?表示什么)方程( 表示什么圖形?)方程:( 探究064220142122222??????????
2024-11-21 03:39
【摘要】知識回顧1.圓的標(biāo)準(zhǔn)方程;2.圓的一般方程;3.點P0(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關(guān)系判斷;4.直線Ax+By+C=0與圓(x-a)2+(y–b)2=r2的位置關(guān)系。問題探究請求出公共弦長。的位置關(guān)系,若相交,與圓
【摘要】(同步復(fù)習(xí)精講輔導(dǎo))北京市2021-2021學(xué)年高中數(shù)學(xué)圓的方程講義新人教A版必修2題一題面:方程211(1)xy????表示的曲線是()A.一個圓B.兩個半圓C.兩個圓D.半圓金題精講題一題面:求以(1,2),(5,6)AB??為直
2024-12-09 01:53
【摘要】解析幾何點到直線距離公式xyP0(x0,y0)O:0lAxByC???SR0022||AxByCdAB????Qd注意:化為一般式.圓的標(biāo)準(zhǔn)方程圓的定義平面內(nèi)到定點的距離等于定長的點的集合。定點定長圓心
2024-11-21 19:45
【摘要】知識回顧1.圓的標(biāo)準(zhǔn)方程;2.圓的一般方程;3.點P0(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關(guān)系判斷。問題探究標(biāo)。,請求其坐的位置關(guān)系,若有交點與圓試判斷直線,:,圓:?。┲本€(,請求其坐標(biāo)。的位置關(guān)系,若有交點與圓判斷直線,試:,圓:?。┲本€(請求其坐標(biāo)。,的位
2025-03-14 14:58
【摘要】知識回顧1.直線的傾斜角的定義;2.直線的斜率公式;3.若兩直線l1:k1x+b1,l2:y=k2x+b2;則l1//l2,l1⊥l2及l(fā)1與l2重合的條件是什么?4.解析幾何中涉及直線的斜率應(yīng)注意什么問題?問題探究探究1:(1)如圖,直徑l經(jīng)過點P0(x0,y0),
【摘要】知識回顧直線的不同方程及適用范圍問題探究探究1:求下列直線的斜率以及與y軸的截距:---=--=--yxxy1451yx13312113(1)1=2(3);(2);()探究2:(1)平面直角坐標(biāo)系中的每一條直線都可以用一個關(guān)于x,
【摘要】知識回顧1.直線的點斜式、斜截式方程及其適用范圍;2.若直線l1:y=k1x+b1,l2:y=k2x+b2;則l1//l2,l1⊥l2及l(fā)1與l2重合、相交的條件是什么?問題探究探究1:若直線l與x軸的截距為3,與y軸的截距為-4,求直線l的方