【摘要】解決幾何體的外接球與內(nèi)切球,就這6個題型!一、外接球的問題簡單多面體外接球問題是立體幾何中的難點和重要的考點,此類問題實質(zhì)是解決球的半徑尺或確定球心0的位置問題,其中球心的確定是關(guān)鍵.(一)?由球的定義確定球心在空間,如果一個定點與一個簡單多面體的所有頂點的距離都相等,那么這個定點就是該簡單多面體的外接球的球心.由上述性質(zhì),可以得到確定簡單多面體外接球的球心的如下
2025-06-21 19:07
【摘要】幾何體的外接球與內(nèi)切球1、內(nèi)切球球心到多面體各面的距離均相等,外接球球心到多面體各頂點的距離均相等。2、正多面體的內(nèi)切球和外接球的球心重合。3、正棱錐的內(nèi)切球和外接球球心都在高線上,但不重合。4、體積分割是求內(nèi)切球半徑的通用做法。一、外接球(一)多面體幾何性質(zhì)法1、已知各頂點都在同一個球面上的正四棱柱的高為4,體積為16,則這個球的表面積是A.B
2025-06-27 15:20
【摘要】數(shù)學研究課題---空間幾何體的外接球與內(nèi)切球問題例1.用兩個平行平面去截半徑為的球面,兩個截面圓的半徑為,.兩截面間的距離為,求球的表面積.分析:此類題目的求解是首先做出截面圖,再根據(jù)條件和截面性質(zhì)做出與球的半徑有關(guān)的三角形等圖形,利用方程思想計算可得.解:設(shè)垂直于截面的大圓面交兩截面圓于,上述大圓的垂直于的直徑交于,如圖2.設(shè),則,解得..說明:通過此類題目,明確球
2025-04-07 04:29
【摘要】八個有趣模型——搞定空間幾何體的外接球與內(nèi)切球類型一、墻角模型(三條線兩個垂直,不找球心的位置即可求出球半徑,三棱錐與長方體的外接球相同)方法:找三條兩兩垂直的線段,直接用公式,即,求出例1(1)已知各頂點都在同一球面上的正四棱柱的高為,體積為,則這個球的表面積是()A.B.C.D.
2025-06-29 07:33
【摘要】河科大附中數(shù)學必修二學習單 編制:楊宏亮 審核:任明俊專題:幾何體的內(nèi)切球和外接球三視圖【學習目標】;?!灾餮凶x學習單※,球為幾何體的內(nèi)切球;,球為幾何體的外接球;;它的外接球半徑為________;內(nèi)切球半徑為________;球心為高的_____等分點。解:如圖所示,設(shè)點是內(nèi)切球的球心,正四面體棱長為.由圖形的對稱性知,點也是外接球
2025-06-29 05:29
【摘要】八個有趣模型——搞定空間幾何體的外接球與內(nèi)切球當講到付雨樓老師于2018年1月14日總第539期微文章,,我以付老師的文章主基石、框架,增加了我個人的理解及例題,形成此文,仍用文原名,,敬請大家批評指正.一、有關(guān)定義1.球的定義:空間中到定點的距離等于定長的點的集合(軌跡)叫球面,簡稱球.2.外接球的定義:若一個多面體的各個頂點都在一個球的球面上,則稱這個多面體是這個球的內(nèi)接
2025-04-07 05:12
【摘要】處理球的“內(nèi)切”“外接”問題一、球與棱柱的組合體問題:1正方體的內(nèi)切球:設(shè)正方體的棱長為,求(1)內(nèi)切球半徑;(2)外接球半徑;(3)與棱相切的球半徑。(1)截面圖為正方形的內(nèi)切圓,得;(2)與正方體各棱相切的球:球與正方體的各棱相切,切點為各棱的中點,如圖4作截面圖,圓為正方形的外接圓,易得。圖3圖4圖5(3)正方體的外接球:正方體的八個頂點都在球面上
2025-03-27 12:03
【摘要】......1球與柱體規(guī)則的柱體,如正方體、長方體、正棱柱等能夠和球進行充分的組合,以外接和內(nèi)切兩種形態(tài)進行結(jié)合,通過球的半徑和棱柱的棱產(chǎn)生聯(lián)系,然后考查幾何體的體積或者表面積等相關(guān)問題.球與正方體發(fā)現(xiàn),解決正
2025-06-23 05:10
【摘要】高考外接球與內(nèi)接球?qū)n}練習(1)正方體,長方體外接球1.如圖所示,已知正方體ABCD﹣A1B1C1D1的棱長為2,長為2的線段MN的一個端點M在棱DD1上運動,另一端點N在正方形ABCD內(nèi)運動,則MN的中點的軌跡的面積為( ?。〢.B.C.D.2.正方體的內(nèi)切球與其外接球的體積之比為( ?。〢.B.
2025-04-20 13:06
【摘要】1球與柱體規(guī)則的柱體,如正方體、長方體、正棱柱等能夠和球進行充分的組合,以外接和內(nèi)切兩種形態(tài)進行結(jié)合,通過球的半徑和棱柱的棱產(chǎn)生聯(lián)系,然后考查幾何體的體積或者表面積等相關(guān)問題.球與正方體發(fā)現(xiàn),解決正方體與球的組合問題,常用工具是截面圖,即根據(jù)組合的形式找到兩個幾何體的軸截面,通過兩個截面圖的位置關(guān)系,確定好正方體的棱與球的半徑的關(guān)系,進而將空間問題轉(zhuǎn)化為平面問題例1
2025-06-23 04:34
【摘要】簡單幾何體的外切球與內(nèi)接球的計算一、棱柱與球1、正棱柱具備內(nèi)切球的條件:側(cè)棱長與底面邊長有一定的運算關(guān)系。分析正三、四、六棱柱具備內(nèi)切球時,基側(cè)棱長與底面邊長的比例。其中正三棱柱的側(cè)棱與底面連長比值為3:1,正四棱柱的側(cè)棱與底面連長的比值為1:1;正六棱柱的側(cè)棱與底面連長的比值為3:3.2、直棱柱的外接球球心位置:上下兩底中心連線的中點。[分析原因]注:長方體和正方體的外
2025-06-23 07:10
【摘要】幾何體的外接球一、球的性質(zhì)回顧如右圖所示:O為球心,O’為球O的一個小圓的圓心,則此時OO’垂直于圓O’所在平面。二、常見平面幾何圖形的外接圓外接圓半徑(r)的求法1、三角形:(1)等邊三角形:等邊三角形也即正三角形,其滿足正多邊形的基本特征:五心合一,即內(nèi)心、外心、重心、垂心、中心重合于一點。內(nèi)心:內(nèi)切圓圓心,各角角平分線的交點;外心:外
2025-03-27 12:12
【摘要】幾何體的外接球?qū)>氄晥D2俯視圖2側(cè)視圖1.一個三棱錐的三視圖如圖所示,則該三棱錐的外接球表面積為()A.B.C.D.2.正方體內(nèi)切球和外接球半徑的比為()A.B.C.D.1:24.已知一個
【摘要】幾何體的外接球?qū)>?.一個三棱錐的三視圖如圖所示,則該三棱錐的外接球表面積為()正視圖2俯視圖2側(cè)視圖A.B.C.D.2.正方體內(nèi)切球和外接球半徑的比為()A.B.C.D.1:24.已知一個