【摘要】幾何體的外接球?qū)>?.一個(gè)三棱錐的三視圖如圖所示,則該三棱錐的外接球表面積為()正視圖2俯視圖2側(cè)視圖A.B.C.D.2.正方體內(nèi)切球和外接球半徑的比為()A.B.C.D.1:24.已知一個(gè)
2025-03-27 12:12
【摘要】幾何體的外接球?qū)>氄晥D2俯視圖2側(cè)視圖1.一個(gè)三棱錐的三視圖如圖所示,則該三棱錐的外接球表面積為()A.B.C.D.2.正方體內(nèi)切球和外接球半徑的比為()A.B.C.D.1:24.已知一個(gè)
【摘要】幾何體的外接球一、球的性質(zhì)回顧如右圖所示:O為球心,O’為球O的一個(gè)小圓的圓心,則此時(shí)OO’垂直于圓O’所在平面。二、常見(jiàn)平面幾何圖形的外接圓外接圓半徑(r)的求法1、三角形:(1)等邊三角形:等邊三角形也即正三角形,其滿足正多邊形的基本特征:五心合一,即內(nèi)心、外心、重心、垂心、中心重合于一點(diǎn)。內(nèi)心:內(nèi)切圓圓心,各角角平分線的交點(diǎn);外心:外
【摘要】幾何體的外接球與內(nèi)切球1、內(nèi)切球球心到多面體各面的距離均相等,外接球球心到多面體各頂點(diǎn)的距離均相等。2、正多面體的內(nèi)切球和外接球的球心重合。3、正棱錐的內(nèi)切球和外接球球心都在高線上,但不重合。4、體積分割是求內(nèi)切球半徑的通用做法。一、外接球(一)多面體幾何性質(zhì)法1、已知各頂點(diǎn)都在同一個(gè)球面上的正四棱柱的高為4,體積為16,則這個(gè)球的表面積是A.B
2025-06-27 15:20
【摘要】解決幾何體的外接球與內(nèi)切球,就這6個(gè)題型!一、外接球的問(wèn)題簡(jiǎn)單多面體外接球問(wèn)題是立體幾何中的難點(diǎn)和重要的考點(diǎn),此類(lèi)問(wèn)題實(shí)質(zhì)是解決球的半徑尺或確定球心0的位置問(wèn)題,其中球心的確定是關(guān)鍵.(一)?由球的定義確定球心在空間,如果一個(gè)定點(diǎn)與一個(gè)簡(jiǎn)單多面體的所有頂點(diǎn)的距離都相等,那么這個(gè)定點(diǎn)就是該簡(jiǎn)單多面體的外接球的球心.由上述性質(zhì),可以得到確定簡(jiǎn)單多面體外接球的球心的如下
2025-06-21 19:07
【摘要】立體幾何之外接球秒殺第一種長(zhǎng)方體正方體模型長(zhǎng)方體各頂點(diǎn)可在一個(gè)球面上,長(zhǎng)為abc,,,其體對(duì)角線為l.當(dāng)球?yàn)殚L(zhǎng)方體的外接球時(shí),截面圖為長(zhǎng)方體的對(duì)角面和其外接圓,故球的半徑例1(1)已知各頂點(diǎn)都在同一球面上的正四棱柱的高為4,體積為16,則這個(gè)球的表面積是()A.16pB.20pC.24
2025-07-27 12:09
【摘要】空間幾何體三視圖與外接球(例題)
2025-03-28 06:42
【摘要】數(shù)學(xué)研究課題---空間幾何體的外接球與內(nèi)切球問(wèn)題例1.用兩個(gè)平行平面去截半徑為的球面,兩個(gè)截面圓的半徑為,.兩截面間的距離為,求球的表面積.分析:此類(lèi)題目的求解是首先做出截面圖,再根據(jù)條件和截面性質(zhì)做出與球的半徑有關(guān)的三角形等圖形,利用方程思想計(jì)算可得.解:設(shè)垂直于截面的大圓面交兩截面圓于,上述大圓的垂直于的直徑交于,如圖2.設(shè),則,解得..說(shuō)明:通過(guò)此類(lèi)題目,明確球
2025-04-07 04:29
【摘要】河科大附中數(shù)學(xué)必修二學(xué)習(xí)單 編制:楊宏亮 審核:任明俊專(zhuān)題:幾何體的內(nèi)切球和外接球三視圖【學(xué)習(xí)目標(biāo)】;?!灾餮凶x學(xué)習(xí)單※,球?yàn)閹缀误w的內(nèi)切球;,球?yàn)閹缀误w的外接球;;它的外接球半徑為_(kāi)_______;內(nèi)切球半徑為_(kāi)_______;球心為高的_____等分點(diǎn)。解:如圖所示,設(shè)點(diǎn)是內(nèi)切球的球心,正四面體棱長(zhǎng)為.由圖形的對(duì)稱性知,點(diǎn)也是外接球
2025-06-29 05:29
【摘要】立體幾何之外接球問(wèn)題一講評(píng)課1課時(shí)總第課時(shí)月日1、已知如圖所示的三棱錐的四個(gè)頂點(diǎn)均在球的球面上,和所在的平面互相垂直,,,,則球的表面積為(?)A.B.C.D.2、設(shè)三棱柱的側(cè)棱垂直于底面,所有棱的長(zhǎng)都為,頂點(diǎn)都在一個(gè)球面上,則該球的表面積為(??)A.B.C.D
2025-06-28 00:21
【摘要】八個(gè)有趣模型——搞定空間幾何體的外接球與內(nèi)切球類(lèi)型一、墻角模型(三條線兩個(gè)垂直,不找球心的位置即可求出球半徑,三棱錐與長(zhǎng)方體的外接球相同)方法:找三條兩兩垂直的線段,直接用公式,即,求出例1(1)已知各頂點(diǎn)都在同一球面上的正四棱柱的高為,體積為,則這個(gè)球的表面積是()A.B.C.D.
2025-06-29 07:33
【摘要】例1一個(gè)六棱柱的底面是正六邊形,其側(cè)棱垂直于底面,已知該六棱柱的頂點(diǎn)都在同一個(gè)球面上,且該六棱柱的體積為,底面周長(zhǎng)為3,則這個(gè)球的體積為.解設(shè)正六棱柱的底面邊長(zhǎng)為,高為,則有∴正六棱柱的底面圓的半徑,球心到底面的距離.∴外接球的半徑..例2已知各頂點(diǎn)都在同一個(gè)球面上的正四棱柱的高為4,體積為16,則這個(gè)球的表面積是A.B.
2025-07-26 02:25
【摘要】八個(gè)有趣模型——搞定空間幾何體的外接球與內(nèi)切球當(dāng)講到付雨樓老師于2018年1月14日總第539期微文章,,我以付老師的文章主基石、框架,增加了我個(gè)人的理解及例題,形成此文,仍用文原名,,敬請(qǐng)大家批評(píng)指正.一、有關(guān)定義1.球的定義:空間中到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合(軌跡)叫球面,簡(jiǎn)稱球.2.外接球的定義:若一個(gè)多面體的各個(gè)頂點(diǎn)都在一個(gè)球的球面上,則稱這個(gè)多面體是這個(gè)球的內(nèi)接
2025-04-07 05:12
【摘要】立體幾何多面體與外接球問(wèn)題專(zhuān)項(xiàng)歸納1、一個(gè)四棱柱的底面是正方形,側(cè)棱與底面垂直,其長(zhǎng)度為4,棱柱的體積為16,棱柱的各頂點(diǎn)在一個(gè)球面上,則這個(gè)球的表面積是( ) 2、一個(gè)正四面體的所有棱長(zhǎng)都為,四個(gè)頂點(diǎn)在同一個(gè)球面上,則此球的表面積為( ) ,試求這個(gè)半球的體積與正方體的體積之比.,四個(gè)頂點(diǎn)在同一個(gè)球面上,則此球的表面積為( )
2025-03-28 06:43