freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx屆高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)精華版_(參考版)

2025-06-02 13:56本頁面
  

【正文】 08. 圓錐曲線方程 知識(shí)要點(diǎn)一、橢圓方程.1. 橢圓方程的第一定義:⑴①橢圓的標(biāo)準(zhǔn)方程:i. 中心在原點(diǎn),焦點(diǎn)在x軸上:. ii. 中心在原點(diǎn),焦點(diǎn)在軸上:. ②一般方程:.③橢圓的標(biāo)準(zhǔn)參數(shù)方程:的參數(shù)方程為(一象限應(yīng)是屬于).⑵①頂點(diǎn):或.②軸:對(duì)稱軸:x軸,軸;長軸長,短軸長.③焦點(diǎn):或.④焦距:.⑤準(zhǔn)線:或.⑥離心率:.⑦焦點(diǎn)半徑:i. 設(shè)為橢圓上的一點(diǎn),為左、右焦點(diǎn),則由橢圓方程的第二定義可以推出.,為上、下焦點(diǎn),則由橢圓方程的第二定義可以推出.由橢圓第二定義可知:歸結(jié)起來為“左加右減”.注意:橢圓參數(shù)方程的推導(dǎo):得方程的軌跡為橢圓. ⑧通徑::和⑶共離心率的橢圓系的方程:橢圓的離心率是,方程是大于0的參數(shù),的離心率也是 我們稱此方程為共離心率的橢圓系方程.⑸若P是橢圓:,若,則的面積為(用余弦定理與可得). 若是雙曲線,則面積為.二、雙曲線方程.1. 雙曲線的第一定義:⑴①雙曲線標(biāo)準(zhǔn)方程:. 一般方程:.⑵①i. 焦點(diǎn)在x軸上: 頂點(diǎn): 焦點(diǎn): 準(zhǔn)線方程 漸近線方程:或ii. 焦點(diǎn)在軸上:頂點(diǎn):. 焦點(diǎn):. 準(zhǔn)線方程:. 漸近線方程:或,參數(shù)方程:或 .②軸為對(duì)稱軸,實(shí)軸長為2a, 虛軸長為2b,焦距2c. ③離心率.。(3)掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡單幾何性質(zhì).?dāng)?shù)學(xué)探索169。(1)掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡單幾何性質(zhì),了解橢圓的參數(shù)方程.?dāng)?shù)學(xué)探索169。.拋物線的簡單幾何性質(zhì).?dāng)?shù)學(xué)探索169。.橢圓的簡單幾何性質(zhì).橢圓的參數(shù)方程.?dāng)?shù)學(xué)探索169。 2)參數(shù)法。則稱方程f(x,y)=0為曲線C的方程,曲線C叫做方程f(x,y)=0的曲線?!埽?80176。若點(diǎn)P(x,y)分有向線段,其中P1(x1,y1),P2(x2,y2).則 特例,中點(diǎn)坐標(biāo)公式;重要結(jié)論,三角形重心坐標(biāo)公式。理解圓的參數(shù)方程.167。(5)了解解析幾何的基本思想,了解坐標(biāo)法.?dāng)?shù)學(xué)探索169。(3)了解二元一次不等式表示平面區(qū)域.?dāng)?shù)學(xué)探索169。(1)理解直線的傾斜角和斜率的概念,掌握過兩點(diǎn)的直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程.?dāng)?shù)學(xué)探索169。.圓的參數(shù)方程.?dāng)?shù)學(xué)探索169。.簡單的線性規(guī)劃問題.?dāng)?shù)學(xué)探索169。直線方程的點(diǎn)斜式和兩點(diǎn)式.直線方程的一般式.?dāng)?shù)學(xué)探索169。167。(4)掌握簡單不等式的解法.?dāng)?shù)學(xué)探索169。(2)掌握兩個(gè)(不擴(kuò)展到三個(gè))正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會(huì)簡單的應(yīng)用.?dāng)?shù)學(xué)探索169。:數(shù)學(xué)探索169。sinB=1/2cbb=Ox1x2+y1y2=O.(4)線段的定比分點(diǎn)公式設(shè)點(diǎn)P分有向線段所成的比為λ,即=λ,則=+ (線段的定比分點(diǎn)的向量公式) (線段定比分點(diǎn)的坐標(biāo)公式)當(dāng)λ=1時(shí),得中點(diǎn)公式:=(+)或 (5)平移公式設(shè)點(diǎn)P(x,y)按向量a=(h,k)平移后得到點(diǎn)P′(x′,y′),則=+a或曲線y=f(x)按向量a=(h,k)平移后所得的曲線的函數(shù)解析式為:y-k=f(x-h)(6)正、余弦定理正弦定理:余弦定理:a2=b2+c2-2bccosA,b2=c2+a2-2cacosB,c2=a2+b2-2abcosC.(7)三角形面積計(jì)算公式:設(shè)△ABC的三邊為a,b,c,其高分別為ha,hb,hc,半周長為P,外接圓、內(nèi)切圓的半徑為R,r.①S△=1/2aha=1/2bhb=1/2chc ②S△=Pr ③S△=abc/4R④S△=1/2sinC0時(shí), 異向。(6)掌握平面兩點(diǎn)間的距離公式,以及線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并且能熟練運(yùn)用掌握平移公式.167。(4)了解平面向量的基本定理,理解平面向量的坐標(biāo)的概念,掌握平面向量的坐標(biāo)運(yùn)算.?dāng)?shù)學(xué)探索169。(2)掌握向量的加法和減法.?dāng)?shù)學(xué)探索169。:數(shù)學(xué)探索169。反三角函數(shù):函數(shù)y=sinx,的反函數(shù)叫做反正弦函數(shù),記作y=arcsinx,它的定義域是[-1,1],值域是.函數(shù)y=cosx,(x∈[0,π])的反應(yīng)函數(shù)叫做反余弦函數(shù),記作y=arccosx,它的定義域是[-1,1],值域是[0,π].函數(shù)y=tanx,的反函數(shù)叫做反正切函數(shù),記作y=arctanx,它的定義域是(-∞,+∞),值域是.函數(shù)y=ctgx,[x∈(0,π)]的反函數(shù)叫做反余切函數(shù),記作y=arcctgx,它的定義域是(-∞,+∞),值域是(0,π).II. 競賽知識(shí)要點(diǎn)一、反三角函數(shù).1. 反三角函數(shù):⑴反正弦函數(shù)是奇函數(shù),故,(一定要注明定義域,若,沒有與一一對(duì)應(yīng),故無反函數(shù))注:,.⑵反余弦函數(shù)非奇非偶,但有,.注:①,.②是偶函數(shù),非奇非偶,而和為奇函數(shù).⑶反正切函數(shù):,定義域,值域(),是奇函數(shù),.注:,.⑷反余切函數(shù):,定義域,值域(),是非奇非偶.,.注:①,.②與互為奇函數(shù),同理為奇而與非奇非偶但滿足.⑵ 正弦、余弦、正切、余切函數(shù)的解集:的取值范圍 解集 的取值范圍 解集①的解集 ②的解集>1 >1 =1 =1 <1 <1 ③的解集: ③的解集:二、三角恒等式.組一組二組三 三角函數(shù)不等式<< 在上是減函數(shù)若,則第五章平面向量考試內(nèi)容:數(shù)學(xué)探索169。; 余弦線:OM。18ˊ. 1176。≈176。=57176。= 1176。)終邊相同的角的集合(角與角的終邊重合):②終邊在x軸上的角的集合: ③終邊在y軸上的角的集合:④終邊在坐標(biāo)軸上的角的集合: ⑤終邊在y=x軸上的角的集合: ⑥終邊在軸上的角的集合:⑦若角與角的終邊關(guān)于x軸對(duì)稱,則角與角的關(guān)系:⑧若角與角的終邊關(guān)于y軸對(duì)稱,則角與角的關(guān)系:⑨若角與角的終邊在一條直線上,則角與角的關(guān)系:⑩角與角的終邊互相垂直,則角與角的關(guān)系:2. 角度與弧度的互換關(guān)系:360176。04. 三角函數(shù) 知識(shí)要點(diǎn)1. ①與(0176。(7)掌握正弦定理、余弦定理,并能初步運(yùn)用它們解斜三角形.?dāng)?shù)學(xué)探索169。(5)理解正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖像和性質(zhì),會(huì)用“五點(diǎn)法”畫正弦函數(shù)、余弦函數(shù)和函數(shù)y=Asin(ωx+φ)的簡圖,、φ的物理意義.?dāng)?shù)學(xué)探索169。(3)掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.?dāng)?shù)學(xué)探索169。(1)理解任意角的概念、弧度的意義能正確地進(jìn)行弧度與角度的換算.?dāng)?shù)學(xué)探索169。.余弦定理.斜三角形解法.?dāng)?shù)學(xué)探索169。、余弦、正切.二倍角的正弦、余弦、正切.?dāng)?shù)學(xué)探索169。.弧度制.?dāng)?shù)學(xué)探索169?!  ?適用于其中{ }是等差數(shù)列,是各項(xiàng)不為0的等比數(shù)列。(三)、數(shù)列求和的常用方法1. 公式法:適用于等差、等比數(shù)列或可轉(zhuǎn)化為等差、等比數(shù)列的數(shù)列。3. 在等差數(shù)列{}中,有關(guān)Sn 的最值問題:(1)當(dāng)0,d0時(shí),滿足的項(xiàng)數(shù)m使得取最大值. (2)當(dāng)0,d0時(shí),滿足的項(xiàng)數(shù)m使得取最小值。(2)通項(xiàng)公式法。成等比數(shù)列。若成等比數(shù)列 (其中),則成等比數(shù)列。推廣:性質(zhì)1若m+n=p+q則 若m+n=p+q,則。(3)理解等比數(shù)列的概念,掌握等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,井能解決簡單的實(shí)際問題. 167。(1)理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).?dāng)?shù)學(xué)探索169。.等比數(shù)列前n項(xiàng)和公式.?dāng)?shù)學(xué)探索169。.?dāng)?shù)學(xué)探索169。x0時(shí),y1.(5)在 R上是增函數(shù)(5)在R上是減函數(shù)對(duì)數(shù)函數(shù)y=logax的圖象和性質(zhì):對(duì)數(shù)運(yùn)算:(以上)a10a1圖象性質(zhì)(1)定義域:(0,+∞)(2)值域:R(3)過點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0(4)時(shí) 時(shí) y0時(shí) 時(shí)(5)在(0,+∞)上是增函數(shù)在(0,+∞)上是減函數(shù)注⑴:當(dāng)時(shí),.⑵:當(dāng)時(shí),取“+”,當(dāng)是偶數(shù)時(shí)且時(shí),而,故取“—”.例如:中x>0而中x∈R).⑵()與互為反函數(shù).當(dāng)時(shí),的值越大,越靠近軸;當(dāng)時(shí),則相反.(四)方法總結(jié)⑴.相同函數(shù)的判定方法:定義域相同且對(duì)應(yīng)法則相同.⑴對(duì)數(shù)運(yùn)算:(以上)注⑴:當(dāng)時(shí),.⑵:當(dāng)時(shí),取“+”,當(dāng)是偶數(shù)時(shí)且時(shí),而,故取“—”.例如:中x>0而中x∈R).⑵()與互為反函數(shù).當(dāng)時(shí),的值越大,越靠近軸;當(dāng)時(shí),則相反.⑵.函數(shù)表達(dá)式的求法:①定義法;②換元法;③待定系數(shù)法.⑶.反函數(shù)的求法:先解x,互換x、y,注明反函數(shù)的定義域(即原函數(shù)的值域).⑷.函數(shù)的定義域的求法:布列使函數(shù)有意義的自變量的不等關(guān)系式,①分母不為0;②偶次根式中被開方數(shù)不小于0;③對(duì)數(shù)的真數(shù)大于0,底數(shù)大于零且不等于1;④零指數(shù)冪的底數(shù)不等于零;⑤實(shí)際問題要考慮實(shí)際意義等.⑸.函數(shù)值域的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.⑹.單調(diào)性的
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1