【摘要】機(jī)動(dòng)目錄上頁下頁返回結(jié)束1一、利用極坐標(biāo)計(jì)算二重積分二、小結(jié)思考題第二節(jié)二重積分的計(jì)算法(2)機(jī)動(dòng)目錄上頁下頁返回結(jié)束2AoDi??irr?iirrr???ii??????i???iiiiiirrr????????????22
2025-05-14 22:22
【摘要】如果積分區(qū)域?yàn)椋?bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標(biāo)系計(jì)算二重積分[X-型])(2xy??abD)(1xy??Dba)(2xy??)(1xy??為曲頂
2025-01-21 17:12
【摘要】機(jī)動(dòng)目錄上頁下頁返回結(jié)束高等數(shù)學(xué)A電子教案第二節(jié)一、利用直角坐標(biāo)計(jì)算二重積分二重積分的計(jì)算法二、利用極坐標(biāo)計(jì)算二重積分三、二重積分的換元法第十章機(jī)動(dòng)目錄上頁下頁返回結(jié)束高等數(shù)學(xué)A電子教案xbad]
2025-05-04 18:15
【摘要】165§13-5三重積分的柱坐標(biāo)計(jì)算法與球坐標(biāo)計(jì)算法§13-5三重積分的柱坐標(biāo)計(jì)算法與球坐標(biāo)計(jì)算法當(dāng)積分區(qū)域在直角坐標(biāo)系中向某個(gè)坐標(biāo)平面的垂直投影是圓或圓的一部分時(shí),時(shí)常采用柱坐標(biāo)計(jì)算三重積分。讀者從圖13-26中看出,點(diǎn)的柱坐標(biāo)實(shí)際上是它到坐標(biāo)平面上垂足的平面極坐標(biāo)與點(diǎn)的豎坐標(biāo)的組合。圖13-26
2024-09-01 16:06
【摘要】§三重積分及其計(jì)算一、三重積分的概念設(shè)),,(zyxf是空間有界閉區(qū)域?上的有界函數(shù),將閉區(qū)域?任意分成n個(gè)小閉區(qū)域1v?,2v?,,?nv?,其中iv?表示第i個(gè)小閉區(qū)域,也表示它的體積,在每個(gè)iv?上任取一點(diǎn)),,(iii???作乘積iiiivf??)
2025-01-22 14:36
【摘要】第二節(jié)二重積分的計(jì)算一、二重積分在直角坐標(biāo)系下的計(jì)算二、二重積分在極坐標(biāo)系下的計(jì)算一、二重積分在直角坐標(biāo)系下的計(jì)算二重積分的計(jì)算主要是化為兩次定積分計(jì)算,簡稱為化為二次積分或累次積分.下面從二重積分的幾何意義來引出這種計(jì)算方法.在直角坐標(biāo)系中,如果用平行于兩個(gè)坐標(biāo)軸的兩組直線段,將區(qū)域D分割成n個(gè)小塊
2025-07-23 20:21
【摘要】第二節(jié)二重積分的計(jì)算法教學(xué)目的:熟練掌握二重積分的計(jì)算方法教學(xué)重點(diǎn):利用直角坐標(biāo)和極坐標(biāo)計(jì)算二重積分教學(xué)難點(diǎn):化二重積分為二次積分的定限問題教學(xué)內(nèi)容:利用二重積分的定義來計(jì)算二重積分顯然是不實(shí)際的,二重積分的計(jì)算是通過兩個(gè)定積分的計(jì)算(即二次積分)來實(shí)現(xiàn)的.一、利用直角坐標(biāo)計(jì)算二重積分我們用幾何觀點(diǎn)來討論二重積分的計(jì)算問題.討論中,我們假定;假定積分區(qū)域
2025-04-10 07:56
【摘要】第九節(jié)二重積分的計(jì)算(一)在直角坐標(biāo)系下計(jì)算二重積分如果積分區(qū)域?yàn)椋?bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba在直角坐標(biāo)系下計(jì)算二重積分[X-型]
2024-09-05 08:49
【摘要】第九章一元函數(shù)積分學(xué)多元函數(shù)積分學(xué)重積分曲線積分曲面積分重積分??????????????????第二類曲面積分第一類曲面積分曲面積分第二類曲線積分第一類曲線積分曲線積分三重積分二重積分重積分?????公
2025-07-26 13:52
【摘要】第3節(jié)第二型(對(duì)坐標(biāo)的)曲面積分一.曲面?zhèn)鹊母拍?雙側(cè)曲面:.,.,,nPnP來的相應(yīng)的法向量也回到原置時(shí)續(xù)變化又回到原來的位邊界而任意連的不越過上在當(dāng)點(diǎn)選定一個(gè)記為量作曲面的法向任一點(diǎn)上過一光滑曲面是設(shè)????.,,,面雙側(cè)曲面也稱為有向曲故曲面的側(cè)取定了法向量即選取了區(qū)分曲面的兩側(cè)量的指
2025-07-28 04:16
【摘要】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)一元微積分學(xué)大大學(xué)學(xué)數(shù)數(shù)學(xué)學(xué)((一一))第二十六講第二十六講定積分的計(jì)算定積分的計(jì)算第五章一元函數(shù)的積分本章學(xué)習(xí)要求:§熟悉不定積分和定積分的概念、性質(zhì)、基本運(yùn)算公式.§熟悉不定積分基本運(yùn)算公式.熟練掌握不定積分和定積分的換元法和分部積
2025-05-01 23:25
【摘要】第二節(jié)二重積分的計(jì)算法第九章一、利用直角坐標(biāo)計(jì)算二重積分且在D上連續(xù)時(shí),0),(?yxf當(dāng)被積函數(shù)???????bxaxyxD)()(:21??(,)ddVDfxyxy???曲頂柱體由曲頂柱體體積的計(jì)算可知,若D為X–型區(qū)域則)(1xy?
2025-01-22 19:11
【摘要】定積分的近似計(jì)算一、問題的背景和目的二、問題分析三、例題一、問題的背景和目的?定積分計(jì)算的基本公式是牛頓-萊布尼茲公式,但當(dāng)被積函數(shù)的原函數(shù)不知道時(shí),如何計(jì)算?這時(shí)就需要利用近似計(jì)算。特別是在許多實(shí)際應(yīng)用中,被積函數(shù)甚至沒有解析表達(dá)式,而是一條實(shí)驗(yàn)記錄曲線,或一組離散的采樣值,此時(shí)只能用近似方法計(jì)算定積分。?本講
2025-07-21 21:56
【摘要】§第一型曲線積分的計(jì)算一、第一型曲線積分的概念曲線形物體的質(zhì)量設(shè)曲線形物體在xoy平面上占有可求長曲線L,其線密度為連續(xù)函數(shù)),(yxf,求該物體的質(zhì)量m。x),(ii??A1M1?iMiMBoyL1?nM2M(2)近似iiis?????)
2025-05-01 22:55
【摘要】濟(jì)南大學(xué)畢業(yè)論文三重積分的計(jì)算與應(yīng)用畢業(yè)論文目錄摘要 IABSTRACT II目錄 III1前言 12三重積分的定義與性質(zhì) 2三重積分的定義 2三重積分的性質(zhì) 23三重積分的計(jì)算 4利用直角坐標(biāo)計(jì)算三重積分 4坐標(biāo)面投影法 4坐標(biāo)軸投影法 7利用對(duì)稱性化簡三重積分計(jì)算 8利
2025-06-26 20:04