【摘要】§07.直線和圓的方程知識要點一、直線方程.1.直線的傾斜角:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時,其傾斜角為0,故直線傾斜角的范圍是.注:①當(dāng)或時,直線垂直于軸,它的斜率不存在.②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當(dāng)直線的斜率一定時,其傾斜角也對應(yīng)確
2025-04-07 05:15
【摘要】-1-高中數(shù)學(xué)解析幾何知識點大總結(jié)第一部分:直線一、直線的傾斜角與斜率(1)定義:直線l向上的方向與x軸正向所成的角叫做直線的傾斜角。(2)范圍:????1800?:直線傾斜角α的正切值叫做這條直線的斜率.?tan?k(1).傾斜角為?90的直線沒
2024-12-21 15:18
【摘要】第一部分:直線1、直線的傾斜角與斜率1.傾斜角α(1)定義:直線l向上的方向與x軸正向所成的角叫做直線的傾斜角。(2)范圍::直線傾斜角α的正切值叫做這條直線的斜率.(1).傾斜角為的直線沒有斜率。(2).每一條直線都有唯一的傾斜角,但并不是每一條直線都存在斜率(直線垂直于軸時,其斜率不存在),這就決定了我們在研
2025-08-11 19:14
【摘要】解析幾何題型求參數(shù)的值是高考題中的常見題型之一,其解法為從曲線的性質(zhì)入手,構(gòu)造方程解之.例1.若拋物線的焦點與橢圓的右焦點重合,則的值為()A.B.C.D.考查意圖:本題主要考查拋物線、橢圓的標(biāo)準(zhǔn)方程和拋物線、橢圓的基本幾何性質(zhì).解答過程:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則
2025-08-08 16:59
【摘要】專業(yè)整理分享高中數(shù)學(xué)解析幾何壓軸題1.選擇題1.已知傾斜角α≠0的直線l過橢圓(a>b>0)的右焦點交橢圓于A、B兩點,P為右準(zhǔn)線上任意一點,則∠APB為( ?。?/span>
【摘要】高中數(shù)學(xué)立體幾何知識點總結(jié) 數(shù)學(xué)立體幾何知識點 ?。赫莆杖齻€公理及推論,會說明共點、共線、共面問題。 能夠用斜二測法作圖。 ?。浩叫小⑾嘟?、異面的概念; 會求異面直線所成...
2024-12-05 02:12
【摘要】高中數(shù)學(xué)之立體幾何平面的基本性質(zhì)公理1如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在這個平面內(nèi).公理2如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線.公理3經(jīng)過不在同一直線上的三個點,有且只有一個平面.根據(jù)上面的公理,可得以下推論.推論1經(jīng)過一條直線和這條直線外一點,有且只有一個平面.推論2經(jīng)過兩條相交直線,有
2025-08-11 19:31
【摘要】高中數(shù)學(xué)解析幾何第一部分:直線1、直線的傾斜角與斜率1.傾斜角α(1)定義:直線l向上的方向與x軸正向所成的角叫做直線的傾斜角。(2)范圍::直線傾斜角α的正切值叫做這條直線的斜率.(1).傾斜角為的直線沒有斜率。(2).每一條直線都有唯一的傾斜角,但并不是每一條直線都存在斜率(直線垂直于軸時,其斜率不存在),這就決定了我們在研究直線的有關(guān)
【摘要】解析幾何解答題1、橢圓G:的兩個焦點為F1、F2,短軸兩端點B1、B2,已知F1、F2、B1、B2四點共圓,且點N(0,3)到橢圓上的點最遠(yuǎn)距離為(1)求此時橢圓G的方程;(2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點E、F,Q為EF的中點,問E、F兩點能否關(guān)于過點P(0,)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.
【摘要】此資料由網(wǎng)絡(luò)收集而來,如有侵權(quán)請告知上傳者立即刪除。資料共分享,我們負(fù)責(zé)傳遞知識。 高中數(shù)學(xué)幾何定理知識點總結(jié) 1過兩點有且只有一條直線 2兩點之間線段最短 3同角或等角的補角相等...
2024-11-19 00:15
【摘要】高中數(shù)學(xué)解析幾何圓錐曲線,點、分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.(1)求點P的坐標(biāo);(2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.,在直角坐標(biāo)系中,設(shè)橢圓的左右兩個焦點分別為.過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.(1)求橢圓的方
2025-07-27 02:05
【摘要】高中數(shù)學(xué)立體幾何知識點歸納總結(jié)一、立體幾何知識點歸納第一章空間幾何體(一)空間幾何體的結(jié)構(gòu)特征(1)多面體——由若干個平面多邊形圍成的幾何體.圍成多面體的各個多邊形叫叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做頂點。旋轉(zhuǎn)體——把一個平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)形成的封閉幾何體。其中,這條定直線稱為旋轉(zhuǎn)體的軸。
2025-04-07 05:14
【摘要】高中課程復(fù)習(xí)專題1高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)
2024-12-21 02:36
【摘要】空間幾何體知識點總結(jié)一、空間幾何體的結(jié)構(gòu)特征1.柱、錐、臺、球的結(jié)構(gòu)特征由若干個平面多邊形圍成的幾何體稱之為多面體。圍成多面體的各個多邊形叫叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做頂點。把一個平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)形成的封閉幾何體稱之為旋轉(zhuǎn)體,其中定直線稱為旋轉(zhuǎn)體的軸。(1)柱棱柱:一般的,有兩個面互相平行,其余各面都是四邊形,
【摘要】第三章一、直線的傾斜角與斜率1、傾斜角的概念:(1)傾斜角:當(dāng)直線與x軸相交時,取x軸作為基準(zhǔn),x軸正向與直線向上方向之間所成的角a叫做直線的傾斜角。(2)傾斜角的范圍:當(dāng)與x軸平行或重合時,規(guī)定它的傾斜角a為0°因此0°≤a<180°。2、直線的斜率(1)斜率公式:K=tana(a≠90°)(2)斜率坐標(biāo)公式:K
2025-08-08 18:34