【摘要】解析幾何題型求參數(shù)的值是高考題中的常見題型之一,其解法為從曲線的性質(zhì)入手,構(gòu)造方程解之.例1.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為()A.B.C.D.考查意圖:本題主要考查拋物線、橢圓的標(biāo)準(zhǔn)方程和拋物線、橢圓的基本幾何性質(zhì).解答過程:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則
2024-08-16 16:59
【摘要】專業(yè)整理分享高中數(shù)學(xué)解析幾何壓軸題1.選擇題1.已知傾斜角α≠0的直線l過橢圓(a>b>0)的右焦點(diǎn)交橢圓于A、B兩點(diǎn),P為右準(zhǔn)線上任意一點(diǎn),則∠APB為( )
2025-04-07 05:15
【摘要】解析幾何解答題1、橢圓G:的兩個(gè)焦點(diǎn)為F1、F2,短軸兩端點(diǎn)B1、B2,已知F1、F2、B1、B2四點(diǎn)共圓,且點(diǎn)N(0,3)到橢圓上的點(diǎn)最遠(yuǎn)距離為(1)求此時(shí)橢圓G的方程;(2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問E、F兩點(diǎn)能否關(guān)于過點(diǎn)P(0,)、Q的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說明理由.
【摘要】高中數(shù)學(xué)解析幾何圓錐曲線,點(diǎn)、分別是橢圓長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于軸上方,.(1)求點(diǎn)P的坐標(biāo);(2)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于,求橢圓上的點(diǎn)到點(diǎn)M的距離的最小值.,在直角坐標(biāo)系中,設(shè)橢圓的左右兩個(gè)焦點(diǎn)分別為.過右焦點(diǎn)且與軸垂直的直線與橢圓相交,其中一個(gè)交點(diǎn)為.(1)求橢圓的方
2025-07-27 02:05
【摘要】解析幾何中的基本公式1、兩點(diǎn)間距離:若,則特別地:軸,則。軸,則。2、平行線間距離:若則:注意點(diǎn):x,y對(duì)應(yīng)項(xiàng)系數(shù)應(yīng)相等。3、
2025-01-17 09:02
【摘要】§07.直線和圓的方程知識(shí)要點(diǎn)一、直線方程.1.直線的傾斜角:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時(shí),其傾斜角為0,故直線傾斜角的范圍是.注:①當(dāng)或時(shí),直線垂直于軸,它的斜率不存在.②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當(dāng)直線的斜率一定時(shí),其傾斜角也對(duì)應(yīng)確
【摘要】高中數(shù)學(xué)競賽專題講座(解析幾何)一、基礎(chǔ)知識(shí)1.橢圓的定義,第一定義:平面上到兩個(gè)定點(diǎn)的距離之和等于定長(大于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的軌跡,即|PF1|+|PF2|=2a(2a|F1F2|=2c).第二定義:平面上到一個(gè)定點(diǎn)的距離與到一條定直線的距離之比為同一個(gè)常數(shù)e(0e1)的點(diǎn)的軌跡(其中定點(diǎn)不在定直線上),即(0e1).第
2025-07-29 03:53
【摘要】高中數(shù)學(xué)解析幾何第一部分:直線1、直線的傾斜角與斜率1.傾斜角α(1)定義:直線l向上的方向與x軸正向所成的角叫做直線的傾斜角。(2)范圍::直線傾斜角α的正切值叫做這條直線的斜率.(1).傾斜角為的直線沒有斜率。(2).每一條直線都有唯一的傾斜角,但并不是每一條直線都存在斜率(直線垂直于軸時(shí),其斜率不存在),這就決定了我們?cè)谘芯恐本€的有關(guān)
【摘要】1圓錐曲線定義的深層及綜合運(yùn)用一、橢圓定義的深層運(yùn)用例1.如圖1,P為橢圓上一動(dòng)點(diǎn),為其兩焦點(diǎn),從的外角的平分線作垂線,垂足為M,將F2P的延長線于N,求M的軌跡方程。圖1解析:易知故在中,則點(diǎn)M的軌跡方程為。二、雙曲線定義的深層運(yùn)用例2.如圖2,為雙曲線的兩焦點(diǎn)
2025-01-11 20:27
【摘要】新課標(biāo)立體幾何解析幾何??碱}匯總1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點(diǎn)∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-07-26 11:22
【摘要】七夕,古今詩人慣詠星月與悲情。吾生雖晚,世態(tài)炎涼卻已看透矣。情也成空,且作“揮手袖底風(fēng)”罷。是夜,窗外風(fēng)雨如晦,吾獨(dú)坐陋室,聽一曲《塵緣》,合成詩韻一首,覺放諸古今,亦獨(dú)有風(fēng)韻也。乃書于紙上。畢而臥。凄然入夢(mèng)。乙酉年七月初七。-----嘯之記。解析幾何中的基本公式1、兩點(diǎn)間距離:若,則特別地:軸,則
2025-01-17 20:51
【摘要】-1-高中數(shù)學(xué)解析幾何知識(shí)點(diǎn)大總結(jié)第一部分:直線一、直線的傾斜角與斜率(1)定義:直線l向上的方向與x軸正向所成的角叫做直線的傾斜角。(2)范圍:????1800?:直線傾斜角α的正切值叫做這條直線的斜率.?tan?k(1).傾斜角為?90的直線沒
2024-12-21 15:18
【摘要】第一部分:直線1、直線的傾斜角與斜率1.傾斜角α(1)定義:直線l向上的方向與x軸正向所成的角叫做直線的傾斜角。(2)范圍::直線傾斜角α的正切值叫做這條直線的斜率.(1).傾斜角為的直線沒有斜率。(2).每一條直線都有唯一的傾斜角,但并不是每一條直線都存在斜率(直線垂直于軸時(shí),其斜率不存在),這就決定了我們?cè)谘?/span>
2024-08-19 19:14
【摘要】高中解析幾何專題(精編版)1.(天津文)設(shè)橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2。點(diǎn)滿足(Ⅰ)求橢圓的離心率;(Ⅱ)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn),若直線PF2與圓相交于M,N兩點(diǎn),且,求橢圓的方程?!窘馕觥勘拘☆}主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線的性質(zhì)及數(shù)
【摘要】啟東中學(xué)內(nèi)部資料請(qǐng)注意保存,嚴(yán)禁外傳!啟東中學(xué)內(nèi)部資料1一、選擇題1.(遼寧理,4)已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為A.22(1)()xy???B.22(1)()???C.D.xy【解析】圓心在x+y=0上,排除C、D,再結(jié)合
2025-04-07 03:22