【摘要】若函數(shù)對定義域中任一均滿足,則函數(shù)的圖像關(guān)于點對稱。(1)已知函數(shù)的圖像關(guān)于點對稱,求實數(shù)的值;(2)已知函數(shù)在上的圖像關(guān)于點對稱,且當(dāng)時,,求函數(shù)在上的解析式;(3)在(1)、(2)的條件下,若對實數(shù)及,恒有,求實數(shù)的取值范圍。答案:(1)由題設(shè)可得,解得;(2)當(dāng)時,;(3)由(1)得,其最小值為,,當(dāng),即時,,得,②當(dāng),即時
2025-01-17 11:39
【摘要】設(shè)函數(shù)f(x)=,解方程:f(x)=f-1(x).答案:首先f(x)定義域為(-∞,-)∪[-,+∞);其次,設(shè)x1,x2是定義域內(nèi)變量,且x10,所以f(x)在(-∞,-)上遞增,同理f(x)在[-,+∞)上遞增。在方程f(x)=f-1(x)中,記f(x)=f-1(x)=y,則y≥0,又由f-1(x)=y得f(
2025-01-18 10:12
【摘要】定義在R上的函數(shù)同時滿足條件:①對定義域內(nèi)任意實數(shù),都有;②時,.那么,(1)試舉出滿足上述條件的一個具體函數(shù);(2)求的值;(3)比較和的大小并說明理由.答案:(1);(2)令,,則,而,∴;(3)∵,∴,∴…4分來源:09年浙江杭州市月考二題型:解答題,難度:中檔已知:f(x)
2025-01-17 05:57
【摘要】在平面直角坐標(biāo)系內(nèi),動點P到x軸、y軸的距離之積等于1,則點P的軌跡方程是答案:xy=±1來源:題型:填空題,難度:中檔設(shè)集合,,是從集合到集合的映射,則在映射下,象的原象有A
2025-01-18 10:15
【摘要】設(shè)為實數(shù),函數(shù).(1)若,求的取值范圍;(2)求的最小值;(3)設(shè)函數(shù),直接寫出(不需給出演算步驟)不等式的解集.答案:(1)若,則(2)當(dāng)時,當(dāng)時,綜上(3)時,得,當(dāng)時,;當(dāng)時,得1)時,2)時,3)時,來源:09年高考江蘇卷題型:解答題,難度:較難
2025-01-17 05:27
【摘要】已知:.(1)求;(2)判斷此函數(shù)的奇偶性;(3)若,求的值.答案:(1)因為所以=(2)由,且知所以此函數(shù)的定義域為:(-1,1)又由上可知此函數(shù)為奇函數(shù).(3)由知得且解得所以的值為:來源:09年湖北宜昌月考一題型:解答題,難度:中檔
2025-01-17 05:17
【摘要】設(shè)是定義在D上的函數(shù),若對D中的任意兩數(shù)(),恒有,則稱為定義在D上的C函數(shù).(Ⅰ)試判斷函數(shù)是否為定義域上的C函數(shù),并說明理由;(Ⅱ)若函數(shù)是R上的奇函數(shù),試證明不是R上的C函數(shù);(Ⅲ)設(shè)是定義在D上的函數(shù),若對任何實數(shù)以及D中的任意兩數(shù),恒有,則稱為定義在D上的C函數(shù).已知是R上的C函數(shù),m是給定的正整數(shù),設(shè),且,記.對于滿足條件的任意函數(shù),試求的最大值.
2025-01-17 10:04
【摘要】在⊿ABC中,BC=,AC=3,sinC=2sinA(I)求AB的值:(II)求sin的值.答案:(Ⅰ)在△ABC中,根據(jù)正弦定理,于是AB=(Ⅱ)在△ABC中,根據(jù)余弦定理,得cosA=于是sinA=從而sin2A=2sinAcosA=,cos2A=cos2A-sin2A=.所以sin(
2025-01-17 09:48
【摘要】(文)已知向量與互相垂直,其中(1)求和的值(2)若,,求的值答案:【解析】(1),,即又∵,∴,即,∴又 ,(2)∵,,即又,∴.來源:09年高考廣東卷題型:解答題,難度:容易求證:(cos108°-isin108°)(cos7
2025-01-18 09:16
【摘要】已知函數(shù)⑴若,求的值;⑵若為常數(shù),且,試討論方程的解的個數(shù)。答案:解:(1);,(2)①時,方程無解;②時,,方程有唯一解;時,,方程有唯一解;③時,或或,方程有三個解。來源:題型:解答題,難度:中檔函數(shù)的反函
2025-01-18 09:20
【摘要】已知f(x)是偶函數(shù),且f(x)=cosqsinx-sin(x-q)+(tanq-2)sinx-sinq的最小值是0,(1)求tanq的值.(2)求f(x)的最大值及此時x的集合.答案:(1):f(x)=cosqsinx-(sinxcosq-cosxsinq)+(tanq-2)sinx-sinq=sinqcosx+(tanq-2)sin
【摘要】一輛郵政車自A城駛往B城,沿途有n個車站(包括起點站A和終點站B),每??恳徽颈阋断虑懊娓髡景l(fā)往該站的郵袋各一個,同時又要裝上該站發(fā)往后面各站的郵袋各一個,設(shè)該車從各站出發(fā)時郵政車內(nèi)的郵袋數(shù)構(gòu)成一個有窮數(shù)列,試求:(1)(2)郵政車從第k站出發(fā)時,車內(nèi)共有郵袋數(shù)是多少個?(3)求數(shù)列的前k項和并證明:答案:(1)由題意得:(2)在第k站出發(fā)
【摘要】(文)已知ΔABC的角A、B、C所對的邊分別是a、b、c,設(shè)向量,,.(1)若//,求證:ΔABC為等腰三角形;(2)若⊥,邊長c=2,角C=,求ΔABC的面積.答案:證明:(1)即,其中R是三角形ABC外接圓半徑,.為等腰三角形(2)由題意可知由余弦定理可知,.
【摘要】集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C=,求a的值.答案:由已知,得B={2,3},C={2,-4}.(1)A∩B=A∪B,A=B于是2,3是一元二次方程x2-ax+a2-19=0的兩個根,由韋達定理知:
2025-01-17 05:16
【摘要】OxyBAC如圖、是單位圓上的點,是圓與軸正半軸的交點,點的坐標(biāo)為,三角形為正三角形.(Ⅰ)求;(Ⅱ)求的值.答案:(Ⅰ)因為點的坐標(biāo)為,根據(jù)三角函數(shù)定義可知,,所以(Ⅱ)因為三角形為正三角形,所以,,,
2025-01-17 10:05