【摘要】?歡迎您來到《線性代數(shù)》實驗室!?在這里,抽象的數(shù)學(xué)已經(jīng)成為一門生動的“實驗科學(xué)”,從實際問題出發(fā),借助計算機,你可以親自設(shè)計、親自動手,去體驗解決問題的過程,從實驗中去學(xué)習(xí)、探索和發(fā)現(xiàn)數(shù)學(xué)規(guī)律。線性代數(shù)實驗課南通職業(yè)大學(xué)基礎(chǔ)課部2021年10月課程目錄?實驗一第一章
2025-05-19 22:03
【摘要】MATLAB與線性代數(shù)的基本運算西安電子科技大學(xué)一、矩陣的基本輸入在MATLAB命令窗口輸入:A=[1,2,3;2,3,4]或A=[123234]二、產(chǎn)生特殊矩陣的函數(shù)zeros創(chuàng)建零矩陣
2024-10-21 16:05
【摘要】上頁下頁返回第二節(jié)矩陣的計算一、矩陣的加法二、數(shù)與矩陣相乘三、矩陣與矩陣相乘四、矩陣轉(zhuǎn)置五、方陣的行列式六、共軛矩陣七、矩陣的應(yīng)用上頁
2024-08-16 10:13
【摘要】第矩陣的運算一.矩陣的加法二.數(shù)與矩陣的乘法三.矩陣與矩陣的乘法四.矩陣的其它運算五.小結(jié)思考題1、定義?????????????????????????mnmnmmmmnnnnbababababababababaB
2024-08-16 10:12
【摘要】Matlab在線性代數(shù)中的應(yīng)用目標(biāo)要求?會給矩陣賦值?會進行矩陣的基本運算,包括:加、減、數(shù)乘,乘法,轉(zhuǎn)置,冪等運算?會用命令inv計算矩陣的逆?會用命令det計算行列式;?會用命令rank計算矩陣的秩;?會用命令rref把矩陣變?yōu)樾凶詈喰停?會用命令rref計算矩陣的逆?會用命令rref解方程組
【摘要】第四章向量組的線性相關(guān)性§1向量組及線性表示目的要求(3)理解向量的線性組合、線性表示概念;(1)了解向量概念;(2)掌握向量加法、數(shù)乘運算法則;(4)掌握線性方程組與線性表示的關(guān)系.一、n維向量的概念nnn組稱為維向量,這個數(shù)稱為該向量的個分量,1
2025-01-22 15:16
【摘要】線性代數(shù)課件第四節(jié)方陣的特征值與特征向量線性代數(shù)課件聊城大學(xué)線性代數(shù)課件主要內(nèi)容特征值,特征向量定義及其性質(zhì)一對角化的條件二小結(jié)三線性代數(shù)課件一特征值,特征向量定義及性質(zhì)線性代數(shù)課件一.特征值,特征向量定義及其性質(zhì)
2024-10-19 21:32
【摘要】線線性性代代數(shù)數(shù)?LinearAlgebra第二章行列式1第二章行列式行列式(Determinant)是線性代數(shù)中的一個最基本、最常用的工具,最早出現(xiàn)于求解線性方程組.它被廣泛地應(yīng)用于數(shù)學(xué)、物理、力學(xué)以及工程技術(shù)等領(lǐng)域.2第二章行
2025-01-20 08:02
【摘要】第三節(jié)逆矩陣,111????aaaa,11EAAAA????則矩陣稱為的可逆矩陣或逆陣.A1?A一、概念的引入在數(shù)的運算中,當(dāng)數(shù)時,0?a有aa11??a其中為的倒數(shù),a(或稱的逆);在矩陣的運算中,E
2024-10-06 19:42
【摘要】第二章矩陣及其運算?矩陣的概念?矩陣的運算?逆矩陣?矩陣分塊法第一節(jié)線性方程組和矩陣?矩陣概念的引入(線性方程組)?矩陣的定義?小結(jié)、思考題???????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa
【摘要】線性代數(shù)復(fù)習(xí).課程重點:解線性方程組★(1)行列式(2)矩陣(3)矩陣初等變換與矩陣的秩(4)向量(5)方陣的相似對角化(6)二次型nn???解個方程個未知量的線性方程組mn???解個方程個未知量的線性方程組解線性方程組判斷線性方程
2025-02-22 06:24
【摘要】.,數(shù)是唯一確定的梯形矩陣中非零行的行梯形,行階把它變?yōu)樾须A變換總可經(jīng)過有限次初等行任何矩陣nmA?.,,12階子式的稱為矩陣階行列式,的中所處的位置次序而得變它們在不改元素處的個),位于這些行列交叉列(行中任取矩陣在定義kAkAknkmkkkAnm???一、矩陣秩的概念矩陣的秩
2024-10-07 01:05
【摘要】第二章矩陣及其運算§1矩陣???????????????mn2m1mn22221n11211aaaaaaaaaA???????),(ija也可以記成行矩陣(行向量),列矩陣(列向量),n階矩陣(n階方陣)
2024-10-22 01:08
【摘要】線性代數(shù)湖南工業(yè)大學(xué)理學(xué)院主講教師:段向陽月年92022第一章第二章第三章第四章第五章第六章第七章答案教學(xué)安排?課程學(xué)時:40學(xué)時?課程性質(zhì):基礎(chǔ)理論課?考
【摘要】線性代數(shù)第一章版權(quán)所有:山東理工大學(xué)理學(xué)院一、行列式的引入二、n階行列式的定義四、小結(jié)思考題§n階行列式的概念三、排列與逆序(另一表達形式)上頁下頁返回線性代數(shù)第一章版權(quán)所有:山東理工大學(xué)理學(xué)院用消元法解二元線性方程組111122121