【摘要】第四節(jié)高階導(dǎo)數(shù)一高階導(dǎo)數(shù)的定義二高階導(dǎo)數(shù)的求法三萊布尼茲公式四小結(jié)問(wèn)題:變速直線運(yùn)動(dòng)的加速度dtdststv???)()(則速度為設(shè)),(tss?.])([)()(??????tstvtava,的變化率對(duì)時(shí)間是速度加速度t?.)())(()()(lim))(()()(0
2025-05-17 02:30
【摘要】§高階導(dǎo)數(shù).),()(),()(它的可導(dǎo)性點(diǎn)的函數(shù),仍可以考察內(nèi)的作為內(nèi)可導(dǎo),則它的導(dǎo)函數(shù)在設(shè)xbaxfbaxfy??,)()(,)(,)(0000點(diǎn)的二階導(dǎo)數(shù)在點(diǎn)的導(dǎo)數(shù)為在且稱(chēng)點(diǎn)二階可導(dǎo)在則稱(chēng)點(diǎn)可導(dǎo)在若xxfyxxfyxxfyxxfy????????.)dd,dd,()(
2025-05-02 02:10
【摘要】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運(yùn)動(dòng)),(tss?)()(tstv??則瞬時(shí)速度為的變化率對(duì)時(shí)間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點(diǎn)為函數(shù)則稱(chēng)存在即處可導(dǎo)在點(diǎn)的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-26 04:25
【摘要】1§?一、多元函數(shù)的極值與最值?二、條件極值?三、最小二乘法*2二元函數(shù)極值的定義?設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)的某鄰域內(nèi)有定義,對(duì)于該鄰域內(nèi)異于(x0,y0)的點(diǎn)(x,y):若滿(mǎn)足不等式f(x,y)f(x0,y0),則稱(chēng)函數(shù)在(x0,y0)有極大值;若滿(mǎn)足不等式f(x,y)
2025-01-11 13:30
【摘要】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束高階導(dǎo)數(shù)第二章一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動(dòng)機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束定義.若函數(shù)
2025-05-02 01:58
【摘要】一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)的求導(dǎo)法則三、小結(jié)思考題第三節(jié)高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問(wèn)題:變速直線運(yùn)動(dòng)的加速度.),(tfs?設(shè))()(tftv??則瞬時(shí)速度為的變化率對(duì)時(shí)間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(
2024-09-03 12:37
2025-05-18 21:42
【摘要】?xxd2cosCx?2sin解決方法將積分變量換成令xt2???xxd2costtdcos21??Ct??sin21Cx??2sin21????x2sinx2cos????xxdcosCx?sinx2cos2.2x因?yàn)?xd)d(221x
2024-08-16 07:16
【摘要】2021/11/101作業(yè)P88習(xí)題5(1).7.8(2)(4).9(1).10(3).P122綜合題:4.5.復(fù)習(xí):P80——88預(yù)習(xí):P89——952021/11/102應(yīng)用導(dǎo)數(shù)研究函數(shù)性態(tài)局部性態(tài)—未定型極限
2024-10-21 22:27
【摘要】00,1,0,,0???????第二節(jié)洛必達(dá)法則一洛必達(dá)法則二其他未定式洛必達(dá)法則型未定式解法型及一、:??00.)x(F)x(flim,)x(F)x(f,)x(ax)x(ax型未定式或稱(chēng)為那末極限大都趨于零或都趨于無(wú)窮與兩個(gè)函數(shù)時(shí)或如果當(dāng)????????00例如
2024-08-12 16:52
【摘要】第一節(jié)導(dǎo)數(shù)的概念一、導(dǎo)數(shù)概念的引出1.變速直線運(yùn)動(dòng)的速度設(shè)描述質(zhì)點(diǎn)運(yùn)動(dòng)位置的函數(shù)為0t則到的平均速度為00)()(tttstsv???而在時(shí)刻的瞬時(shí)速度為00)()(lim0tttstsvtt????221tg
2025-04-26 05:05
【摘要】1第六節(jié)反常積分第七節(jié)定積分的幾何應(yīng)用返回一、無(wú)窮限的反常積分二、無(wú)界函數(shù)的反常積分第六節(jié)反常積分三、函數(shù)?復(fù)習(xí)1、首先考慮2、其次考慮3、再次考慮換元法直接積分法湊微分法或分部法.dxxfba?
2024-12-11 09:20
【摘要】第五節(jié)隱函數(shù)及參數(shù)方程確定函數(shù)的導(dǎo)數(shù)一隱函數(shù)求導(dǎo)法二對(duì)數(shù)求導(dǎo)法三參數(shù)方程確定函數(shù)的導(dǎo)數(shù)四小結(jié):.稱(chēng)為隱函數(shù)所確定的函數(shù)由二元方程)(),(xyyyxF?形式稱(chēng)為顯函數(shù).)(xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問(wèn)題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?如何求導(dǎo)?
2025-07-26 17:58
【摘要】1高階導(dǎo)數(shù)第三節(jié)一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)求法舉例三、小結(jié)及作業(yè)2一、高階導(dǎo)數(shù)的定義問(wèn)題:變速直線運(yùn)動(dòng)的加速度.),(tss?設(shè)).()(tstv??則瞬時(shí)速度為的變化率,對(duì)時(shí)間是速度因?yàn)榧铀俣萾va定義.)())((,)()(lim))((,)()(處的二階導(dǎo)數(shù)在點(diǎn)為則稱(chēng)存在即處可
2025-05-10 12:10
【摘要】一、問(wèn)題的提出二、導(dǎo)數(shù)的定義四、函數(shù)可導(dǎo)性與連續(xù)性的關(guān)系五、小結(jié)思考題三、導(dǎo)數(shù)的幾何意義第一節(jié)導(dǎo)數(shù)概念一、問(wèn)題的提出0tt?,0時(shí)刻的瞬時(shí)速度求tt考慮最簡(jiǎn)單的變速直線運(yùn)動(dòng)--自由落體運(yùn)動(dòng),如圖,,0tt的時(shí)刻取一鄰近于,?運(yùn)動(dòng)時(shí)間ts???v平均速度
2024-09-03 12:41