【正文】
however, the results of an endurance test series are only meanin gful when the test bearings fail by fatiguerelated mechanisms. The experimenter must control the test process to ensure that this occurs. S ome of the other failure modes that can be experienced are discussed in detail by Tallian [19. 2]. The followin g paragraphs deal with a few specific failure types that can affect the conduct of a life test sequence. In Chapter 23, the influence of lubricat ion on contact fatigue life is discussed from the standpoint of EHL film generation. There are also other lubrication related effects that can affect the oute of the test series. T he first is particulate contaminants in the lubricant. Depending on bearin g size, operating speed, and lubricant rheolo gy, the overall thickness of the lubricant film developed at the rollin g element raceway contacts may fall between 0. 05 and ? m . Solid partic les and damage the raceway and rollin g e lement surfaces, leadin g to substantially shortened endurances. T his has been amply demonstrated by Sayles and MacPherson [] and others. Therefore, filtration of the lubricant to the desired level is necessary to ensure meaningfu l test result. The desired level is determined by the application which the testing purports to approximate. If this degree of filtration is not provided, effects of contamination must be considered when evaluatin g test results. Chapter 23 discusses the effect of various degrees of particulate contamination, and hence filtration, on bearing fatigue life. T he moisture content in the lubricant is another important consideration. It has long been apparent that quantit ies of free water in the oil cause corrosion of the rolling cont act surfaces and thus have a detrimental effect on bearing life. It has been further shown by Fitch [19. 7] and others, however, that water levels as low as 50100 parts per million(ppm) may also have a detrimental effect, even with no evidence of corrosion . T his is due to hydrogen embrittlement of the rollin g element and raceway material. See also Chapter 23. Moisture control in 河南科技大學(xué)外文 翻譯 8 test lubrication systems is thus a major concern, and the effect of moisture needs to be considered during the evaluation of life test results. A maximum of 40 ppm is considered necessary to minimize life reduction effects. The chemical position of the test lubricant also requires consideration. Most mercial lubricants contain a number of proprietary addit ives developed for specif ic purposes。因此,噪聲等級的劃分有助于工業(yè)標(biāo)準的改進。隨著 ABE C 級別的增加(從3 增到 9),公差逐漸變小。 利用軸承的噪聲特性對軸承進行分類,用戶除了可以確定大多數(shù)廠商所使用的 A BEC 標(biāo)準外,還可確定軸承的噪聲等級。這種缺陷是由在軸承圈和滾珠的磨削加工中出現(xiàn)的振動引起的??刹煊X的凹坑是一種制造缺陷,它是在制造過程中由于多爪卡盤夾的太緊而形成的。 低頻噪聲是長波段不規(guī)則變化的結(jié)果。通常軸承缺陷被分為低、中、高三個波段。例如,灰塵產(chǎn)生的是不規(guī)則的噼啪聲;滾珠劃痕產(chǎn)生一種連續(xù)的爆破聲,確定這種劃痕最困難;內(nèi)圈損傷通常產(chǎn)生連續(xù)的高頻噪聲,而外圈損傷則產(chǎn)生一種間歇的聲音。即用 um/rad 表示的軸承位移。將一傳感器連接在軸承外圈上,而內(nèi)圈在心軸以 1800r/ min 的轉(zhuǎn)速旋轉(zhuǎn)。軸承的性能可以用不同的噪聲等級來表示。采用密封和遮護裝置來擋開臟物是控制污染的一種方法。如果軸承過熱,它將會卡住。但是,由于軸承內(nèi)外圈的運動,使軸承的密封不可能達到完美的程 度,因此潤滑油的泄漏和污染始終是一個未能解決的問題。因此在機床的應(yīng)用中應(yīng)該使用非重復(fù)性振擺較小的軸承。例如,當(dāng)要求振擺最小時,軸承的非重復(fù)性振擺不能超過 微米。和重復(fù)性振擺不同的是, NR R 是沒有辦法進行補償?shù)摹? 在軸承轉(zhuǎn)動過程中,如果內(nèi)圈和外圈之間存在一個隨機的偏心距,就會產(chǎn)生與凸輪運動非常 相似的非重復(fù)性振擺( N RR)。舉例來說,潤滑脂產(chǎn)生的噪聲比潤滑油大一些。潤滑劑的粘度必須認真加以選擇,因為不適宜的潤滑劑會產(chǎn)生過大的扭矩,這在小型軸承中尤其如此。這些特征包括噪聲、起動和運轉(zhuǎn)扭矩、剛性、非重復(fù)性振擺以及徑向和軸向間隙。 2 .避免失效的方法 解決軸承失效問題的最好辦法就是避免失效發(fā)生。 最后的 4 張圖片不是用正確的實驗方法得到的有效的失效模式。圖 是表面凹陷殘骸的詳細圖片。圖 是滾子軸承溝道由于未校準而造成表面開裂的圖片。而正常的顯微圖片請看 ~ 中的圖片。 元素 金相實驗可以提供一個精確的證據(jù),使實驗結(jié)果處于可控制情況下,同時檢測有疑點和爭議的地方。 Tallian 將所有軸承失效的黑白圖片匯編起來【 】 ,可以為判斷各種類型的失效提供依據(jù)。生產(chǎn)時出現(xiàn)的會導(dǎo)致缺陷的元素以及殘留在表面發(fā)生化學(xué)變化以后會導(dǎo)致缺陷的元素(如 S, P 等有害元素)等都會影響軸承的壽命。 耐久性實驗最后結(jié)果的有效性是由元素 金相分析驗證的。有的也不一定,比如一些表面硬度不同的鋼材或是專為實驗用生產(chǎn)的鋼材。標(biāo)準的軸承鋼在耐久性實驗中缺陷的遞增速度是相當(dāng)快的。 缺陷遞增的速率是相當(dāng)重要的。而當(dāng)前還沒有一個單一的系統(tǒng)能檢測出所有的軸承缺陷??梢栽谙到y(tǒng)中應(yīng)用這些技術(shù)方法來檢驗缺陷。為了檢測這個缺陷就需要使這個缺陷遞增到能影響軸承參數(shù)的數(shù)量級別。軸承缺陷最早是由原材料上的微小裂紋引起的。同時這樣的機構(gòu)也會在裝配面上產(chǎn)生重大的幾何形變,從而影響軸承內(nèi)徑,最終成為降 低壽命的河南科技大學(xué)外文 翻譯 4 重要原因。腐蝕是由于震動產(chǎn)生的微粒被氧化而產(chǎn)生的。這樣的改變會影響幾何形狀的。用于重載實驗的軸和軸承的內(nèi)圈都會受到很大的載荷。C 的溫度公差被認為是可接受的。因此對于軸承壽命試驗時 177。因此,所有軸承受溫度變化的影 響會直接影響到壽命試驗數(shù)據(jù)的準確性。潤滑層(油膜)的厚度對溫度的影響是相當(dāng)敏感的,大多數(shù)裝機實驗是在標(biāo)準的工業(yè)環(huán)境下進行的,