【正文】
for example, to provide antiwear properties, to achieve extreme pressure and/or thermal stability, and to provide boundary lubrication in case of marginal lubricant films. These additives can also affect the endurance of rolling bearings, either immediately or after experiencing timerelated degradation. Care must be taken to ensure that the additives included in the test lubricant will not suffer excessive deterioration as a result of accelerated life test conditions. Also for consistency of results and paring life test groups, it is good practice to utilize one standard test lubricant from a particular producer for the conduct of all general life tests.The statistical nature of rolling contact fatigue requires many test samples to obtain a reasonable estimate of life. A bearing life test sequence thus needs a long time. A major job of the experimentalist is to ensure the consistency of the applied test conditions throughout the entire test period. This process is not simple because subtle changes can occur during the test period. Such changes might be overlooked until their effects bee major. At that time it is often too late to salvage the collected data, and the test must be redone under better controls.For example, the stability of the additive packages in a test lubricant can be a source of changing test conditions. Some lubricants have been known to suffer additive depletion after an extended period of operation. The degradation of the additive package can alter the EHL conditions in the rolling content, altering bearing life. Generally, the normal chemical tests used to evaluate lubricants do not determine the conditions of the additive content. Therefore if a lubricant is used for endurance testing over a long time, a sample of the fluid should be returned to the producer at regular intervals, say annually, for a detailed evaluation of its condition.Adequate temperature controls must also be employed during the test. The thickness of the EHL film is sensitive to the contact temperature. Most test machines are located in standard industrial environments where rather wide fluctuations in ambient temperature are experienced over a period of a year. In addition, the heat generation rates of individual bearings can vary as a result of the bined effects of normal manufacturing tolerances. Both of these conditions produce variations in operating temperature levels in a lot of bearings and affect the validity of the life data. A means must be provided to monitor and control the operating temperature level of each bearing to achieve a degree of consistency. A tolerance level of3C is normally considered adequate for the endurance test process.The deterioration of the condition of the mounting hardware used with the bearings is another area requiring constant monitoring. The heavy loads used for life testing require heavy interference fits between the bearing inner rings and shafts. Repeated mounting and dismounting of bearings can produce damage to the shaft surface, which in turn can alter the geometry of a mounted ring. The shaft surface and the bore of the housing are also subject to deterioration from fretting corrosion. Fretting corrosion results from the oxidation of the fine wear particles generated by the vibratory abrasion of the surface, which is accelerated by the heavy endurance test loading. This mechanism can also produce significant variations in the geometry of the mounting surfaces, which can alter the internal bearing geometry. Such changes can have a major effect in reducing bearing test life.The detection of bearing failure is also a major consideration in a life test series. The fatigue theory considers failure as the initiation of the firs