freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

錦州市勾股定理選擇題(及答案)(4)(參考版)

2025-04-05 03:36本頁面
  

【正文】 選項錯誤;故選D.【點睛】考查直角三角形的判定,學(xué)生熟練掌握勾股定理逆定理是本題解題的關(guān)鍵,并結(jié)合直角三角形的定義解出此題.25.B解析:B【解析】試題解析:依題意得:梯子、地面、墻剛好形成一直角三角形,梯高為斜邊,利用勾股定理得:梯腳與墻角距離:=(米).故選B.26.A解析:A【解析】分析:直接利用勾股定理的逆定理進而結(jié)合直角三角形面積求法得出答案.詳解:∵52+122=132,∴三條邊長分別為5里,12里,13里,構(gòu)成了直角三角形,∴這塊沙田面積為:550012500=7500000(平方米)=(平方千米).故選A.點睛:此題主要考查了勾股定理的應(yīng)用,正確得出三角形的形狀是解題關(guān)鍵.27.B解析:B【分析】已知為邊上的高,要求的面積,求得即可,求證,得,設(shè),則在中,根據(jù)勾股定理求,于是得到,即可得到答案.【詳解】解:由翻折變換的性質(zhì)可知,設(shè),則,在中,即,解得:,.故選:.【點睛】本題考查矩形的性質(zhì)、折疊的性質(zhì)、勾股定理等內(nèi)容,根據(jù)折疊的性質(zhì)得到是解題的關(guān)鍵.28.C解析:C【分析】由AP+CP=AC得到=BP+AC,即計算當BP最小時即可,此時BP⊥AC,根據(jù)三角形面積公式求出BP即可得到答案.【詳解】∵AP+CP=AC,∴=BP+AC,∴BP⊥AC時,有最小值,設(shè)AH⊥BC,∵∴BH=3,∴,∵,∴,∴BP=,∴=AC+BP=5+=,故選:C.【點睛】此題考查等腰三角形的三線合一的性質(zhì),勾股定理,最短路徑問題,正確理解時點P的位置是解題的關(guān)鍵.29.B解析:B【分析】延長交于點,延長交于點,可得四邊形是正方形,然后求出正方形的邊長,再求出矩形的長與寬,然后根據(jù)矩形的面積公式列式計算即可得解.【詳解】解:如圖,延長交于點,延長交于點,則四邊形是矩形.,又直角中,在和中,,同理:,,所以,矩形是正方形,邊長,所以,因此,矩形的面積為,故選B.【點睛】本題考查了勾股定理的證明,作出輔助線構(gòu)造出正方形是解題的關(guān)鍵.30.C解析:C【分析】設(shè),對應(yīng)的邊長為,根據(jù)題意,通過等邊三角形和勾股定理的性質(zhì),得,從而計算得到;設(shè),對應(yīng)的邊長為,通過圓形面積和勾股定理性質(zhì),得,從而計算得到,即可得到答案.【詳解】分別以直角三角形三邊為邊向外作等邊三角形,面積分別為,則,對應(yīng)的邊長設(shè)為,根據(jù)題意得: ∴,∵ ∴∴以直角三角形三邊長為直徑向外作半圓,面積分別為,則,對應(yīng)的邊長設(shè)為,根據(jù)題意得:∴,∵∴∴∴故選:C.【點睛】本題考查了勾股定理、等邊三角形、圓形面積的知識;解題的關(guān)鍵是熟練掌握勾股定理、等邊三角形面積計算的性質(zhì),從而完成求解.??傻谩螦=90176??傻谩螦=90176。又∠DAB+∠ABD=90176。AC=6,BC=8,∴由勾股定理得:AB=10,又,∴,∴PC+PQ的最小值為,故選:A.【點睛】本題考查了角平分線的性質(zhì)、最短路徑問題、勾股定理、三角形等面積法求高,解答的關(guān)鍵是掌握線段和最短類問題的解決方法:一般是運用軸對稱變換將直線同側(cè)的點轉(zhuǎn)化為異側(cè)的點,從而把兩條線段的位置關(guān)系轉(zhuǎn)換,再根據(jù)兩點之間線段最短或垂線段最短,使兩條線段之和轉(zhuǎn)化為一條直線來解決.16.C解析:C【分析】利用勾股定理的逆定理:如果三角形兩條邊的平方和等于第三邊的平方,那么這個三角形就是直角三角形.最長邊所對的角為直角.由此判定即可.【詳解】解:A、因為92+72≠122,所以三條線段不能組成直角三角形;B、因為22+32≠42,所以三條線段不能組成直角三角形;C、因為12+2= 22,所以三條線段能組成直角三角形;D、因為52+112≠122,所以三條線段不能組成直角三角形.故選C.【點睛】此題考查勾股定理逆定理的運用,注意數(shù)據(jù)的計算.17.C解析:C【分析】本題可根據(jù)兩個非負數(shù)相加和為0,則這兩個非負數(shù)的值均為0解出x、y的值,然后運用勾股定理求出斜邊的長.斜邊長的平方即為正方形的面積.【詳解】依題意得:,∴,斜邊長,所以正方形的面積.故選C.考點:本題綜合考查了勾股定理與非負數(shù)的性質(zhì)點評:解這類題的關(guān)鍵是利用直角三角形,用勾股定理來尋求未知系數(shù)的等量關(guān)系.18.D解析:D【分析】根據(jù)勾股定理求出AB的長,即為AC的長,再根據(jù)數(shù)軸上的點的表示解答.【詳解】由勾股定理得,∴∵點A表示的數(shù)是1∴點C表示的數(shù)是故選D.【
點擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1