【摘要】 教學(xué)建議 ,,但要注意結(jié)構(gòu)形式的變化對(duì)數(shù)值的要求. ,柯西不等式中的字母、數(shù)較多,不容易記憶,這就要求認(rèn)真理解代數(shù)推導(dǎo)過程和向量形式、三角形式的推導(dǎo)過程,從數(shù)與形兩個(gè)方面來理解和記憶....
2025-04-03 03:50
【摘要】 教學(xué)建議 ,是從特殊到一般的認(rèn)識(shí)過程,其中三維形式的柯西不等式是過渡的橋梁,三維形式的柯西不等式可以對(duì)比二維形式的柯西不等式來理解和記憶,. ,因此,要從整體結(jié)構(gòu)上認(rèn)識(shí)這個(gè)不等式,形成...
2025-04-03 03:38
【摘要】 教學(xué)建議 ,能構(gòu)造的和按數(shù)組中的某種“搭配”的順序被分為三種形式:順序和、反序和、“次序”,兩種較為簡(jiǎn)單是“順與反”,而亂序和也就不按“常理”,我們只需記住用特殊例子的方法來說大小關(guān)系,...
2025-04-03 03:57
【摘要】第一課時(shí)二維形式的柯西不等式(一)教學(xué)要求:認(rèn)識(shí)二維柯西不等式的幾種形式,理解它們的幾何意義,并會(huì)證明二維柯西不等式及向量形式.教學(xué)重點(diǎn):會(huì)證明二維柯西不等式及三角不等式.教學(xué)難點(diǎn):理解幾何意義.教學(xué)過程:一、復(fù)習(xí)準(zhǔn)備:1.提問:二元均值不等式有哪幾種形式?答案:(0,0)2abab
2024-11-23 20:23
【摘要】課時(shí)作業(yè)(三十九)絕對(duì)值不等式及柯西不等式(選修4-5)一、選擇題1.“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件答案:B解析:|x-1|<2?-1<x<3,x(x-3)<0?0<x<3.則(0,3)(-1,3).故應(yīng)選B.2.設(shè)a,b為滿足ab<0的實(shí)
2025-08-08 15:29
【摘要】柯西不等式?答案:及幾種變式.、b、c、d為實(shí)數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實(shí)數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時(shí)取等號(hào),假設(shè))變式:.定理:設(shè)是兩個(gè)向量,則.等號(hào)成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實(shí)數(shù),求證.
2025-04-07 05:05
【摘要】課時(shí)作業(yè)76 柯西不等式與排序不等式、數(shù)學(xué)歸納法證明不等式時(shí)間:45分鐘 分值:100分一、填空題(每小題5分,共45分)1.已知實(shí)數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為________.解析:由(x2+y2+z2)(12+22+32)≥(x+2y+3z)2=1可得,x2+y2+z2≥.答案:2.(2010·廣東東莞)若x+2
2024-08-29 17:02
【摘要】Mathwang幾個(gè)經(jīng)典不等式的關(guān)系一幾個(gè)經(jīng)典不等式(1)均值不等式設(shè)是實(shí)數(shù),等號(hào)成立.(2)柯西不等式設(shè)是實(shí)數(shù),則當(dāng)且僅當(dāng)或存在實(shí)數(shù),使得時(shí),等號(hào)成立.(3)排序不等式設(shè),為兩個(gè)數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.(4)切比曉夫不等式對(duì)于兩個(gè)數(shù)組:,,有當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.二相關(guān)證明(1)用排
2025-04-20 08:24
【摘要】 教學(xué)建議 :a2+b2≥2ab及定理2:的應(yīng)用要注意: (1)a2+b2≥2ab與成立的條件是不同的,前者只要求a,b都是實(shí)數(shù),而后者要求a,,例如:(-1)2+(-4)2≥2×(-1...
2025-04-03 03:21
【摘要】 教學(xué)建議 在利用算術(shù)幾何平均不等式求某些函數(shù)的最大、最小值時(shí),應(yīng)注意以下三點(diǎn): (1)在函數(shù)式中,各項(xiàng)(必要時(shí),還要考慮常數(shù)項(xiàng))必須都是正數(shù),若不是正數(shù),必須變形為正數(shù). (2)在函...
2025-04-03 03:45
【摘要】 教學(xué)建議 :||a|-|b||≤|a+b|,在解決各類含絕對(duì)值不等式問題時(shí)經(jīng)常用到,要注意理解應(yīng)用. |a|-|b|≤|a±b|≤|a|+|b|的詮釋. 定理的構(gòu) 成部分 特征 ...
2025-04-03 03:22
【摘要】 教學(xué)建議 . ,使不等式變?yōu)椴缓^對(duì)值符號(hào)的一般不等式,而后,其解法就與解一般不等式或不等式組相同. |x-a||x-b|(a≠b)的解法可以利用解不等式|x|a(a0)?x2...
2025-04-03 01:44
【摘要】經(jīng)典例題透析類型一:利用柯西不等式求最值 1.求函數(shù)的最大值. 思路點(diǎn)撥:利用不等式解決最值問題,通常設(shè)法在不等式一邊得到一個(gè)常數(shù),并尋找不等式取等號(hào)的條件.這個(gè)函數(shù)的解析式是兩部分的和,若能化為ac+bd的形式就能利用柯西不等式求其最大值.也可以利用導(dǎo)數(shù)求解?! 〗馕觯骸 》ㄒ唬骸咔?, ∴函數(shù)的定義域?yàn)?,且, ?dāng)且僅當(dāng)時(shí),等號(hào)
2025-03-28 04:42
【摘要】第三講柯西不等式與排序不等式一二維形式的柯西不等式若a,b,c,d都是實(shí)數(shù),則(a2+b2)(c2+d2)≥(ac+bd)2當(dāng)且僅當(dāng)ad=bc時(shí),等號(hào)成立.定理1(二維形式的柯西不等式):你能證明嗎?推論22222222||abcdacbdabc
2025-07-26 10:08
【摘要】排序不等式三?????,?,:.,,,.,.,,,,,,.,,,,,,,,.,小個(gè)三角形的面積之和最使得到的才能如何一一搭配個(gè)三角形面積之和最大得到的才能使邊上的點(diǎn)如何一一搭配邊上的點(diǎn)與問不同因而三角形面積也可能不同得到的不同搭配的方法顯然個(gè)三角形得到一共可以這樣一一搭配得到連結(jié)某個(gè)點(diǎn)與選取某個(gè)點(diǎn)邊也
2024-11-21 15:12