freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學培優(yōu)易錯試卷(含解析)之平行四邊形附答案解析(參考版)

2025-03-31 22:12本頁面
  

【正文】 AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因為AE=nPA,所以PE==CQ=PD=ADAP=.所以AP=.所以=.問題2:(1)如圖2,設對角線與相交于點.所以G是DC的中點,作QHBC,交BC的延長線于H,因為AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由圖知,當 AB時,的長最小,即=CH=4.易得四邊形BPQH為矩形,所以QH=BP=AP.所以.(若學生有能力從梯形中位線角度考慮,若正確即可評分.但講評時不作要求)(2)PQ的最小值為..考點:1.直角三角形的性質(zhì);2.全等三角形的判定與性質(zhì);3.平行四邊形的性質(zhì);4矩形的判定與性質(zhì).。AC=4,BC=3,P為AC邊上的一動點,以PB,PA為邊構造□APBQ,求對角線PQ的最小值及PQ最小時的值.(1)在解決這個問題時,小明構造出了如圖2的輔助線,則PQ的最小值為 ,當PQ最小時= _____ __;(2)小明對問題1做了簡單的變式思考.如圖3,P為AB邊上的一動點,延長PA到點E,使AE=nPA(n為大于0的常數(shù)).以PE,PC為邊作□PCQE,試求對角線PQ長的最小值,并求PQ最小時的值;問題2:在四邊形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如圖4,若為上任意一點,以,為邊作□.試求對角線長的最小值和PQ最小時的值.(2)若為上任意一點,延長到,使,再以,為邊作□.請直接寫出對角線長的最小值和PQ最小時的值.【答案】問題1:(1)3,;(2)PQ=,=.問題2:(1)=4,.(2)PQ的最小值為..【解析】試題分析:問題1:(1)首先根據(jù)條件可證四邊形PCBQ是矩形,然后根據(jù)條件“四邊形APBQ是平行四邊形可得AP=QB=PC,從而可求的值.(2)由題可知:當QP⊥AC時,PQ最?。^點C作CD⊥AB于點D.此時四邊形CDPQ為矩形,PQ=CD,在Rt△ABC中,∠C=90176?!嗨倪呅蜛KBH為矩形.∠ABE=∠ACD,∴∠AKB=90176。.∵∠EBC=90176。△ABC的面積不變化,以下證明:如圖2,作AH⊥BC交BC于H,過點B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點K,連接AK.∵AH⊥BC于H,∴∠AHC=90176?!唷螮BC=90176。;(2)①如圖2,以AB為邊在△ABC外作正三角形ABE,連接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60176?!唷螮AC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120176。;(2)①2;②2【解析】試題分析:(1)根據(jù)SAS,可首先證明△AEC≌△ABD,再利用全等三角形的性質(zhì),可得對應角相等,根據(jù)三角形的外角的定理,可求出∠BFC的度數(shù);(2)①如圖2,在△ABC外作等邊△BAE,連接CE,利用旋轉(zhuǎn)法證明△EAC≌△BAD,可證∠EBC=90176。.∴AE⊥DF;(4)如圖:由于點P在運動中保持∠APD=90176。.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可證AE=DF,∠DAE=∠CDF延長FD交AE于點G,則∠CDF+∠ADG=90176。.在△ADE和△DCF中,∴△ADE≌△DCF(SAS).∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90176。所以AE⊥DF;(3)成立.由(1)同理可證AE=DF,∠DAE=∠CDF,延長FD交AE于點G,再由等角的余角相等可得AE⊥DF;(4)由于點P在運動中保持∠APD=90176。DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因為∠CDF+∠ADF=90176?!唷螦BP=176。+∠PBR=90176。=176。﹣90176。∴CP=CE,∴∠CPE=∠CEP=176。與∠PEC>90176。.若△PEC為等腰三角形,則EP=EC.∴∠EPC=∠ECP=45176。.∵∠PBC<90176?!郆C=OB.∵BC=1,∴OB=,∴PF=.∴點PP在運動過程中,PF的長度不變,值為.(2)當點E落在線段DC的延長線上時,符合要求的圖形如圖3所示.同理可得:PB=PE,PF=.(3)①若點E在線段DC上,如圖1.∵∠BPE=∠BCE=90176。﹣∠BPO=∠EPF.∵EF⊥PC即∠PFE=90176。.∵PE⊥PB即∠BPE=90176?!唷螧PG=90176。.∴PG=PH,∠GPH=∠PGB=∠PHE=90176?!唷螧AF=∠DAE,∵四邊形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90176。根據(jù)ASA判定△ABF≌△ADE,根據(jù)全等三角形的性質(zhì)即可證得AF=AE.【詳解】∵AF⊥AE,∴∠BAF+∠BAE=90176。至△ADG,可使AB與AD重合,證出△AFE≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(3)把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,證明△AFE≌△AFG(SAS),則EF=FG,∠C=∠ABF=45176。【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析.【解析】試題分析:(1)把△ABE繞點A逆時針旋轉(zhuǎn)90176。,AB=AC,點D、E均在邊BC上,且∠DAE=45176。F分別在邊BC、CD上,∠EAF=45176。連接EF、則EF=BE+DF,試說明理由;(2)類比引申如圖2,在四邊形ABCD中,AB=AD,∠BAD=90176。在△ABE和△AFH中,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,F(xiàn)G=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG=CF,∴EC=HG+FC.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握等腰直角三角形的判定與性質(zhì),證明三角形全等是解題的關鍵.10.(1)問題發(fā)現(xiàn)如圖1,點E.∴AC=AB=4,∵4AF=3AC=12,∴AF=3,∴CF=AC﹣AF=,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理得:AE=,∴△AEF的周長=AE+EF+AF=;(2)證明:延長GF交BC于M,連接AG,如圖2所示:則△CGM和△CFG是等腰直角三角形,∴CM=CG,CG=CF,∴BM=DG,∵AF=AB,∴AF=AD,在Rt△AFG和Rt△ADG中,∴Rt△AFG≌Rt△ADG(HL),∴FG=DG,∴BM=FG,∵∠BAC=∠EAH=45176。得出AC=AB=4,求出AF=3,CF=AC﹣AF=,求出△CEF是等腰直角三角形,得出EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周長;(2)
點擊復制文檔內(nèi)容
黨政相關相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1