freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)-平行四邊形-培優(yōu)易錯試卷練習(xí)(含答案)附答案解析(參考版)

2025-04-02 00:11本頁面
  

【正文】 ==考點(diǎn):三角形全等的證明與性質(zhì).?!唷螰CP=∠GCE=60176。 ∴∠FCE+∠GCE=120176。 ∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120176。∵∠CBF=180176。 CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如圖:CP⊥GF仍成立理由如下:過D作EF的平行線,交FP延長于點(diǎn)G連接CG、CF證△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC ∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60176。 在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P為DE的中點(diǎn) ∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60176。 ∴∠DAH=∠ABC=60176。根據(jù)Rt△ADH的正弦值得出AD的長度,然后得出BE的長度,然后證明△PDG≌△PEF,得出DG=EF,根據(jù)EF∥AD,AD∥BC得出EF∥BC,則說明△BEF為正三角形,從而得出DG的長度;(2)連接CG、CF,根據(jù)△PDG≌△PEF得出PG=PF,然后證明△CDG≌△CBF,從而得到CG=CF,根據(jù)PG=PF得出垂直;(3)過D作EF的平行線,交FP延長于點(diǎn)G,連接CG、CF證△PEF≌△PDG,然后證明△CDG≌△CBF,從而得出∠GCE=120176。則∠DAH=∠ABC=60176。若點(diǎn)E在AB的延長線上,EF∥AD,EF=BE,點(diǎn)P是DE的中點(diǎn),連接FP并延長交AD于點(diǎn)G.(1)過D作DHAB,垂足為H,若DH=,BE=AB,求DG的長;(2)連接CP,求證:CPFP;(3)如圖2,在菱形ABCD中,ABC=60176。 ∴AD⊥BQ;(2)、小慧思考問題的方式中,蘊(yùn)含的數(shù)學(xué)思想是:分類討論思想;拓展延伸:四邊形MNPT是正方形,理由:∵取AB、BD、DQ、AQ的中點(diǎn)M、N、P、T, ∴MNAD,TPAD, ∴MNTP,∴四邊形MNPT是平行四邊形, ∵NPBQ,BQ=AD, ∴NP=MN, ∴平行四邊形MNPT是菱形,又∵AD⊥BQ,NP∥BQ,MN∥AD, ∴∠MNP=90176。即可得出答案.試題解析:(1)、成立,理由:如圖乙:由題意可得:∠FDE=∠QDC=∠ABC=∠BAC=45176?!嗨倪呅蜛KBH為矩形.∠ABE=∠ACD,∴∠AKB=90176。.∵∠EBC=90176?!鰽BC的面積不變化,以下證明:如圖2,作AH⊥BC交BC于H,過點(diǎn)B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點(diǎn)K,連接AK.∵AH⊥BC于H,∴∠AHC=90176?!唷螮BC=90176。;(2)①如圖2,以AB為邊在△ABC外作正三角形ABE,連接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60176?!唷螮AC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120176。;(2)①2;②2【解析】試題分析:(1)根據(jù)SAS,可首先證明△AEC≌△ABD,再利用全等三角形的性質(zhì),可得對應(yīng)角相等,根據(jù)三角形的外角的定理,可求出∠BFC的度數(shù);(2)①如圖2,在△ABC外作等邊△BAE,連接CE,利用旋轉(zhuǎn)法證明△EAC≌△BAD,可證∠EBC=90176?!唷螮CB=∠PEG,∵PE=EC,∠EGP=∠CBE=90176?!唷螦CP=∠DCQ.∴,△APC≌△DQC(AAS),∴AP=DQ.又∵S△ABC=BC?AP,S△DFC=FC?DQ,∴S△ABC=S△DFC;(3)解:根據(jù)(2)得圖中陰影部分的面積和是△ABC的面積三倍,若圖中陰影部分的面積和有最大值,則三角形ABC的面積最大,∴當(dāng)△ABC是直角三角形,即∠C是90度時,陰影部分的面積和最大.∴S陰影部分面積和=3S△ABC=334=18.考點(diǎn):四邊形綜合題12.正方形ABCD的邊長為1,對角線AC與BD相交于點(diǎn)O,點(diǎn)E是AB邊上的一個動點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),CE與BD相交于點(diǎn)F,設(shè)線段BE的長度為x.(1)如圖1,當(dāng)AD=2OF時,求出x的值;(2)如圖2,把線段CE繞點(diǎn)E順時針旋轉(zhuǎn)90176。.∵四邊形ACDE,BCFG均為正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90176。時,圖中陰影部分的面積和有最大值是________.【答案】(1)證明見解析;(2)成立,證明見解析;(3)18.【解析】試題分析:(1)因?yàn)锳C=DC,∠ACB=∠DCF=90176。時,求證:△ABC與△DCF的面積相等.(2)引申:如果∠C90176?!唷螧AC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45176。﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45176?!郈N∥AB; (2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180176。∴∠ANC+∠MAN+∠BAM=∠ANC+60176?!摺螦NC+∠ACN+∠CAN=∠ANC+60176。根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.詳解:(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60176。從而得到∠BAC∠CAM=∠MAN∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45176。cos30176?!唷螦MN=30176?!螱BN=30176?!螰BG=∠FGB=∠ABG=45176。即可解決問題.試題解析:(1)結(jié)論:AG2=GE2+GF2.理由:連接CG.∵四邊形ABCD是正方形,∴A、C關(guān)于對角線BD對稱,∵點(diǎn)G在BD上,∴GA=GC,∵GE⊥DC于點(diǎn)E,GF⊥BC于
點(diǎn)擊復(fù)制文檔內(nèi)容
物理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1