【總結(jié)】放縮法證明不等式一、放縮法原理 為了證明不等式,我們可以找一個(gè)或多個(gè)中間變量C作比較,即若能判定同時(shí)成立,那么顯然正確。所謂“放”即把A放大到C,再把C放大到B;反之,由B縮小經(jīng)過C而變到A,則稱為“縮”,統(tǒng)稱為放縮法。放縮是一種技巧性較強(qiáng)的不等變形,必須時(shí)刻注意放縮的跨度,做到“放不能過頭,縮不能不及”。二、常見的放縮法技巧?。?、基本不等式、柯西不等式、排序不等式放縮2、糖
2025-03-25 02:44
【總結(jié)】第一篇:放縮法證明“數(shù)列+不等式”問題的兩條途徑 放縮法證明“數(shù)列+不等式”問題的兩條途徑 數(shù)列與不等式的綜合問題常常出現(xiàn)在高考的壓軸題中,是歷年命題的熱點(diǎn),解決這類問題常常用到放縮法。用放縮法解...
2024-10-29 04:45
【總結(jié)】第一篇:放縮法與不等式的證明 放縮法與不等式的證明 我們知道,“放”和“縮”是證明不等式時(shí)最常用的推證技巧,但經(jīng)教學(xué)實(shí)踐告訴我們,這種技巧卻是不等式證明部分的一個(gè)教學(xué)難點(diǎn)。學(xué)生在證明不等式時(shí),常因...
2024-10-28 03:46
【總結(jié)】第一篇:利用放縮法證明不等式舉例 利用放縮法證明不等式舉例 高考中利用放縮方法證明不等式,文科涉及較少,但理科卻常常出現(xiàn),且多是在壓軸題中出現(xiàn)。放縮法證明不等式有法可依,但具體到題,又常常沒有定法...
2024-10-27 12:24
【總結(jié)】第一篇:淺談?dòng)梅趴s法證明不等式 淮南師范學(xué)院2012屆本科畢業(yè)論文1 目錄 引言?????????????????????????????????(2)?????????????????????...
2024-10-28 08:11
【總結(jié)】第一篇:數(shù)列不等式結(jié)合的題的放縮方法 數(shù)列不等式結(jié)合的題的放縮方法 2011-4-611:51提問者:makewest|懸賞分:20|瀏覽次數(shù):559次 2011-4-611:53最佳答案 放...
【總結(jié)】第一篇:證明數(shù)列前n項(xiàng)和不等式的定積分放縮法 證明數(shù)列前n項(xiàng)和不等式的定積分放縮法 摘要:本文深入分析數(shù)列與函數(shù)之間的聯(lián)系,結(jié)合高等數(shù)學(xué)中數(shù)項(xiàng)級(jí)數(shù)[4]的觀點(diǎn)研究高考證明數(shù)列前n項(xiàng)和不等式的相關(guān)問...
2024-11-03 22:04
【總結(jié)】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件18《數(shù)列數(shù)列通項(xiàng)與數(shù)列中的不等式》一、基礎(chǔ)知識(shí).n有有關(guān)的命題:第一步:驗(yàn)證初始狀態(tài),即“n=n0時(shí)命題成立”;第二步:假設(shè)推理,即“假設(shè)n=k(k≥n0)時(shí)命題成立,由此出發(fā),推得n=k+1時(shí)命題也成立”.:21,0???aaa:注
2024-11-11 02:53
【總結(jié)】第一篇:用放縮法證明不等式1 用放縮法證明不等式 時(shí)間:2009-01-1310:47點(diǎn)擊: 1230次 不等式是高考數(shù)學(xué)中的難點(diǎn),而用放縮法證明不等式學(xué)生更加難以掌握。不等式是衡量學(xué)生數(shù)學(xué)素...
2024-10-28 03:53
【總結(jié)】第一篇:《數(shù)列和式不等式的放縮策略》讀書筆記 數(shù)學(xué)通訊(2008年第18期) 數(shù)列和式不等式的放縮策略 季強(qiáng) (江蘇省常州高級(jí)中學(xué)數(shù)學(xué)組,213003) 數(shù)列一直以來也是高考的重點(diǎn),試卷的壓...
2024-10-28 23:22
【總結(jié)】第一部分:三個(gè)重要的放縮一、放縮后轉(zhuǎn)化為等比數(shù)列。例1.滿足:(1)用數(shù)學(xué)歸納法證明:(2),求證:二、放縮后裂項(xiàng)迭加例2.?dāng)?shù)列,,其前項(xiàng)和為求證:(1)用表示出(2)若在上恒成立,求的取值范圍(3)證明:
2025-06-16 12:41
【總結(jié)】第一篇:北京市陳經(jīng)綸中學(xué)高三數(shù)學(xué)-用放縮法證明不等式 用放縮法證明不等式 一.引入 (1)a克糖水中有b克糖(ab0),若再添上m克糖(m0),則糖水就變甜了,試根據(jù)這個(gè)事實(shí)提 煉一個(gè)不...
2024-10-27 16:58
【總結(jié)】不等式的證明(4)換元法復(fù)習(xí):分析法:一、三角換元注意點(diǎn):角的范圍與半徑的范圍二、代數(shù)換元代數(shù)換元:主元;均值代換練習(xí)小結(jié):
【總結(jié)】第6講不等式高考要點(diǎn)回扣1.不等式(1)不等式的性質(zhì)對(duì)不等式的性質(zhì),關(guān)鍵是正確理解和運(yùn)用,要弄清每一個(gè)性質(zhì)的條件和結(jié)論,注意條件的放寬和加強(qiáng),以及條件、結(jié)論之間的相互聯(lián)系,不等式的性質(zhì)包括“單向性”和“雙向性”兩個(gè)方面.單向性主要用于證明不等式,雙向性是解不等式的基礎(chǔ),因此解不等式要求的是同解變形.(
2024-11-10 07:32
【總結(jié)】1.均值不等式法例1設(shè)求證例2已知函數(shù),若,且在[0,1]上的最小值為,求證:例3求證.例4已知,,求證:≤1.2.利用有用結(jié)論例5求證例6已知函數(shù)求證:對(duì)任意且恒成立。例7已知用數(shù)學(xué)歸納法證明;對(duì)對(duì)都成立,證明(無理數(shù))例8已知不等式。表示不超過的最大整數(shù)。設(shè)正數(shù)數(shù)列滿足:求證再如:設(shè)函數(shù)。(Ⅰ)
2025-08-11 11:16