【總結】 大家網(wǎng) 11/12高中數(shù)學不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質和應用不等式的性質和運算法則有許多,如對稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當a1時,原
2025-06-07 23:55
【總結】基本不等式的應用課時目標;(小)值問題.1.設x,y為正實數(shù)(1)若x+y=s(和s為定值),則當______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當______時,和x+y有最____值,且這個值為______.2.利用
2024-12-05 10:12
【總結】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-18 08:48
【總結】第三章綜合檢測(時間:120分鐘滿分:150分)一、選擇題(本大題共12個小題,每個小題5分,共60分,每小題給出的四個備選答案中,有且僅有一個是符合題目要求的)1.a(chǎn)、b∈R下列命題正確的是()A.若a>b,則a2>b2B.若|a|>b,則a2>b2C.若a>|
2024-11-28 00:02
【總結】3.基本不等式的證明學習目標預習導學典例精析欄目鏈接情景導入如下圖所示,以線段a+b的長為直徑作圓,在直徑AB上取點C,使AC=a,CB=b,過點C作垂直于直徑AB的弦DD′,連接AD、DB,則DC能否用a,b表示,DD′與A
2024-11-17 19:03
【總結】2021/1/61高中數(shù)學復習課代數(shù)第五章不等式第一課時[知識要點]本章的知識要點包括:不等式、不等式的性質、不等式的證明、不等式的解法、含有絕對值的不等式。這些知識點間和內在
2024-11-30 12:27
【總結】第2章數(shù)列(B)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.在等差數(shù)列{an}中,a3=2,則{an}的前5項和為________.2.設Sn為等比數(shù)列{an}的前n項和,已知3S3=a4-2,3S2=a3-2,則公比q=________.3.
2024-12-05 00:27
【總結】菜單課后作業(yè)典例探究·提知能自主落實·固基礎高考體驗·明考情新課標·文科數(shù)學(安徽專用)第四節(jié)基本不等式菜單課
2025-01-06 16:33
【總結】第11課時:§基本不等式的證明(2)【三維目標】:一、知識與技能;;,求最值時注意一正二定三相等。;基本不等式在證明題和求最值方面的應用。二、過程與方法通過幾個例題的研究,進一步掌握基本不等式2abab??,并會用此定理求某些函數(shù)的最大、最小值。三、情感、
2024-11-20 00:26
【總結】基本不等式的應用教學目標:一、知識與技能1.能利用基本不等式解決最值問題;2.會利用基本不等式解決與三角有關問題.二、過程與方法1.通過實例體會基本不等式在最值問題中的應用;2.通過實例體會總結基本不等式在應用中需要注意的問題.三、情感、態(tài)度與價值觀通過親歷解題的過程,
【總結】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當且僅當a=b時,等號成立.+b2叫做a、b的算術平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-05 10:13
【總結】第一頁,編輯于星期六:點三十六分。,第一課時基本不等式,第二頁,編輯于星期六:點三十六分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十六分。,第四頁,編輯于星期六:點三十六分。,第...
2024-10-22 19:00
2024-10-22 19:01
【總結】第三章不等式課題:§不等式與不等關系第1課時授課類型:新授課【教學目標】1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量的不等關系,理解不等式(組)的實際背景,掌握不等式的基本性質;2.過程與方法:通過解決具體問題,學會依據(jù)具體問題的實際背景分析問題、解決問題的方法;3.情態(tài)與
2024-11-19 20:24
【總結】3.1不等關系與不等式3.不等式與大小比較學習目標.2.會用差值法比較兩實數(shù)的大?。n堂互動講練知能優(yōu)化訓練3.不等式與大小比較課前自主學案課前自主學案溫故夯基1.在三角形中任意兩邊之和_____第三邊,任意兩邊之差_____第三邊.
2025-01-06 16:34