【總結(jié)】、余弦、正切公式2020、12、24一、復(fù)習(xí):?)cos(????C)(???簡記:兩角差的余弦公式??)cos(??????sinsincoscos?同名積,符號反。二、公式的推導(dǎo)??)cos(??)](cos[???????
2024-11-18 12:17
【總結(jié)】 第2課時 兩角和與差的正弦、余弦、正切公式(二) 兩角和與差的正切公式 名稱 公式 簡記符號 使用條件 兩角和 的正切 tan(α+β)= T(α+β) α,β,...
2025-04-03 03:46
【總結(jié)】不查表,求cos(–375°)的值.解:cos(–375°)=cos375°=cos(360°+15°)=cos15°1.15°能否寫成兩個特殊角的和或差的形式?2.
2024-11-09 23:32
【總結(jié)】兩角和與差的正切公式的應(yīng)用學(xué)習(xí)目標(biāo)目標(biāo)1目標(biāo)2目標(biāo)1目標(biāo)2目標(biāo)1和角與差角正切公式的應(yīng)用學(xué)習(xí)目標(biāo)目標(biāo)1目標(biāo)2目標(biāo)1目標(biāo)2目標(biāo)和角與差角正切變形公式的應(yīng)用和角與差角正切公式的應(yīng)用學(xué)習(xí)目標(biāo)朝花夕拾目標(biāo)1目標(biāo)2目標(biāo)1和角與差角正切公式的應(yīng)用??ta
2025-08-16 02:12
【總結(jié)】主講人:孫再堂老師1、數(shù)軸上兩點間距離公式是什么?在平面直角坐標(biāo)系中A(4,0)、B(2,0)、C(0,-4)、D(0,9)AB、CD長度是多少?E(4,1)、F(2,1)、G(-1,-4)、H(-1,9)EF、GH長度是多少?FG長度又是多少?一、新課引入數(shù)軸上兩點間距離等于兩點坐
2024-11-10 00:49
【總結(jié)】課時作業(yè)21 兩角和與差的正弦、余弦和正切 [基礎(chǔ)達標(biāo)] 一、選擇題 ( ) A.-B. C.-D. 2.[2021·北京西城區(qū)檢測]4cos50°-tan40°=( ) . .2...
2025-04-05 05:24
【總結(jié)】名稱簡記符號公式使用條件兩角和的余弦兩角差的余弦+C??()C???()cos()coscossinsin?????????cos()coscossinsin?????????,R???,R???名
2024-12-04 18:51
【總結(jié)】課時跟蹤檢測(二十)兩角和與差的正弦、余弦和正切公式一抓基礎(chǔ),多練小題做到眼疾手快1.(2022·西安質(zhì)檢)sin45°cos15°+cos225°sin165°=()A.1B.12C.32D.-12解析:選Bsin45
2025-01-09 17:56
【總結(jié)】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(一)1.能根據(jù)兩角差的余弦公式推導(dǎo)出兩角和與差的正弦公式及兩角和的余弦公式,并能利用公式進行化簡求值.(重點)2.熟練掌握兩角和與差的正弦、余弦公式的特征和符號規(guī)律.(易混點)3.能正用、逆用、變形用公式進行化簡求值.
【總結(jié)】兩角和與差的正弦、余弦、正切公式一、和角與差角公式應(yīng)用的規(guī)律兩角和與差的正、余弦公式主要用于求值、化簡、證明等三角變換,常見的規(guī)律如下:①配角的方法:通過對角的“合成”與“分解”,尋找欲求角與已知角的內(nèi)在聯(lián)系,靈活應(yīng)用公式,如α=(α+β)-β,α=21(α+β)+21(α-β)等.②公式的逆用與變形公式的活用
2024-12-05 06:46
【總結(jié)】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(二)1.能利用兩角和與差的正、余弦公式推導(dǎo)出兩角和與差的正切公式并能應(yīng)用.(重點)2.能夠熟練地正用、逆用和變形應(yīng)用兩角和與差的正切公式.(重點、難點)兩角和與差的正切公式做一做(1)已知tanα=1
【總結(jié)】兩角和與差的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦公式.2.會用兩角和與差的正、余弦公式進行簡單的三角函數(shù)的求值、化簡、計算等.3.熟悉兩角和與差的正、余弦公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.學(xué)習(xí)重點
【總結(jié)】兩角和與差的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1.能利用兩角和與差的正、余弦公式推導(dǎo)出兩角和與差的正切公式.2.能利用兩角和與差的正切公式進行化簡、求值、證明.3.熟悉兩角和與差的正切公式的常見變形,并能靈活應(yīng)用.學(xué)習(xí)重點:兩角和、差正切公式的推導(dǎo)過程及運用學(xué)習(xí)難點:兩角和與差正切公式的靈活運用一.
【總結(jié)】兩角和與差的正弦、余弦、正切公式重點:公式的應(yīng)用.難點:公式的推導(dǎo)及變形應(yīng)用.六個公式的特征兩角和(差)的余弦:余余、正正、符號異(即公式右端分別是α與β的余弦之積,以及正弦之積,中間的符號與左邊相反);兩角和(差)的正弦:正余、余正、符號同;兩角和(差)的正切:分子同、分母異.它們的內(nèi)在聯(lián)系如下:一、和(差)角的余弦公式