【總結(jié)】等比數(shù)列的前n項(xiàng)和(一)課時(shí)目標(biāo)n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決一些簡(jiǎn)單問(wèn)題.1.等比數(shù)列前n項(xiàng)和公式:(1)公式:Sn=?????=qq=.(2)注意:應(yīng)用該公式時(shí),一定不要忽略q=1的情況.2.若{an}是等比數(shù)列,且公比q≠1,則前n項(xiàng)
2024-12-05 10:13
【總結(jié)】第一篇:2012高中數(shù)學(xué)(第2課時(shí))教案新人教A版必修5 (二)教學(xué)目標(biāo) (一)知識(shí)與技能目標(biāo) 進(jìn)一步熟練掌握等比數(shù)列的定義及通項(xiàng)公式; (二)過(guò)程與能力目標(biāo) 利用等比數(shù)列通項(xiàng)公式尋找出...
2024-10-25 14:03
【總結(jié)】等比數(shù)列(第1課時(shí))學(xué)習(xí)目標(biāo),理解等比數(shù)列的概念.,明確一個(gè)數(shù)列是等比數(shù)列的限定條件;能夠運(yùn)用類比的思想方法得到等比數(shù)列的定義,會(huì)推導(dǎo)等比數(shù)列的通項(xiàng)公式.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境:定義:通項(xiàng)公式:an=a1+(n-1)d,(n∈N*).前n項(xiàng)和公式:Sn==na1+d,(n∈
2024-12-08 07:03
【總結(jié)】等比數(shù)列的前n項(xiàng)和(一)沙河二中高一數(shù)學(xué)組復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項(xiàng)公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2024-11-17 19:50
【總結(jié)】等比數(shù)列的通項(xiàng)公式(2)班級(jí)學(xué)號(hào)姓名學(xué)學(xué)習(xí)習(xí)目目標(biāo)標(biāo),理解等比數(shù)列的概念,.,能運(yùn)用通項(xiàng)公式解決一些簡(jiǎn)單的實(shí)際問(wèn)題。課課堂堂學(xué)學(xué)習(xí)習(xí)一、重點(diǎn)難點(diǎn):等比數(shù)列的性質(zhì)及應(yīng)用;:等比數(shù)列性質(zhì)的發(fā)現(xiàn)及推導(dǎo).課課前前準(zhǔn)準(zhǔn)
2024-11-19 23:13
【總結(jié)】第一頁(yè),編輯于星期六:點(diǎn)三十四分。,2.4等比數(shù)列第二課時(shí)等比數(shù)列的性質(zhì),第二頁(yè),編輯于星期六:點(diǎn)三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十四分。,第四頁(yè),編輯于星期六...
2024-10-22 18:53
【總結(jié)】2.5等比數(shù)列的前n項(xiàng)和第一課時(shí)等比數(shù)列的前n項(xiàng)和課前預(yù)習(xí)·巧設(shè)計(jì)名師課堂·一點(diǎn)通創(chuàng)新演練·大沖關(guān)第二章數(shù)列考點(diǎn)一考點(diǎn)二課堂強(qiáng)化
2025-01-06 16:36
【總結(jié)】等比數(shù)列的前n項(xiàng)和(第一課時(shí))創(chuàng)設(shè)情境明總:在一個(gè)月中,我第一天給你一萬(wàn),以后每天比前一天多給你一萬(wàn)元。林總:我第一天還你一分錢,以后每天還的錢是前一天的兩倍創(chuàng)設(shè)情境林總:哈哈!這么多錢!我可賺大了,我要是訂了兩個(gè)月,三個(gè)月那該多好??!果真如此嗎?創(chuàng)設(shè)情境請(qǐng)你們幫林總分析一下
2024-11-17 15:04
【總結(jié)】等比數(shù)列的前等比數(shù)列的前n項(xiàng)和項(xiàng)和(第二課時(shí))(第二課時(shí))普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)·數(shù)學(xué)·必修5等比數(shù)列的前等比數(shù)列的前n項(xiàng)和項(xiàng)和(第二課時(shí))(第二課時(shí))一、實(shí)例探究例1.如圖,畫(huà)一個(gè)邊長(zhǎng)為2cm的正方形,再將這個(gè)正方形各邊的中點(diǎn)相連得到第二個(gè)正方形,依此類推,這樣一共畫(huà)了10個(gè)正方形.求:(1
2024-08-14 10:49
【總結(jié)】第3課時(shí)等比數(shù)列的前n項(xiàng)和知能目標(biāo)解讀n項(xiàng)和公式的推導(dǎo)方法--錯(cuò)位相減法,并能用其思想方法求某類特殊數(shù)列的前n項(xiàng)和.n項(xiàng)和公式以及性質(zhì),并能應(yīng)用公式解決有關(guān)等比數(shù)列前n項(xiàng)的問(wèn)題.在應(yīng)用時(shí),特別要注意q=1和q≠1這兩種情況.n項(xiàng)和公式解決有關(guān)的實(shí)際應(yīng)用問(wèn)題.重點(diǎn)難點(diǎn)點(diǎn)撥重點(diǎn):掌握等比數(shù)列的求和公式,會(huì)
2024-11-19 20:39
【總結(jié)】《等比數(shù)列的前n項(xiàng)和》(第一課時(shí))人教A版高中數(shù)學(xué)必修5第二章第5節(jié)知識(shí)與技能目標(biāo):理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法;掌握等比數(shù)列的前n項(xiàng)和公式及其簡(jiǎn)單應(yīng)用.過(guò)程與方法目標(biāo):通過(guò)本節(jié)課的學(xué)習(xí),提高學(xué)生的建模意識(shí)及分析問(wèn)題、解決問(wèn)題的能力,領(lǐng)悟分類討論思想和方程思想的應(yīng)用
2024-07-26 21:58
【總結(jié)】等比數(shù)列的前n項(xiàng)和教學(xué)過(guò)程推進(jìn)新課[合作探究]師在對(duì)一般形式推導(dǎo)之前,我們先思考一個(gè)特殊的簡(jiǎn)單情形:1+q+q2+?+qn=?師這個(gè)式子更突出表現(xiàn)了等比數(shù)列的特征,請(qǐng)同學(xué)們注意觀察生觀察、獨(dú)立思考、合作交流、自主探究師若將上式左邊的每一項(xiàng)乘以公比q,就出現(xiàn)了什么樣的結(jié)果呢?生q+q2+?+qn
2024-12-08 13:12
【總結(jié)】【成才之路】2021年春高中數(shù)學(xué)第1章數(shù)列3等比數(shù)列第2課時(shí)等比數(shù)列的性質(zhì)同步練習(xí)北師大版必修5一、選擇題1.等比數(shù)列中,a5a14=5,則a8·a9·a10·a11=()A.10B.25C.50D.75[答案]B[解析]
2024-12-05 06:36
【總結(jié)】等比數(shù)列的前n項(xiàng)和(二)課時(shí)目標(biāo)n項(xiàng)和公式的有關(guān)性質(zhì)解題.n項(xiàng)和公式解決實(shí)際問(wèn)題.1.等比數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)公比q≠1時(shí),Sn=__________=__________;當(dāng)q=1時(shí),Sn=_______.2.等比數(shù)列前n項(xiàng)和的性質(zhì):(1)連續(xù)m項(xiàng)的和(如Sm、S2
2024-12-05 06:35
【總結(jié)】等比數(shù)列的綜合應(yīng)用A組基礎(chǔ)鞏固1.已知等比數(shù)列的公比為2,且前5項(xiàng)和為1,那么前10項(xiàng)和等于()A.31B.33C.35D.37解析:根據(jù)等比數(shù)列性質(zhì)得S10-S5S5=q5,∴S10-11=25,∴S10=33.答案:B2.在等比數(shù)列{an}中,S4=1,S8=