【總結】·圓心角:我們把頂點在圓心的角叫做圓心角.OBA在⊙O中,∠AOB就是圓心角,弦AB是這個圓心角所對的弦,是它所對的弧AB如圖,將圓心角∠AOB繞圓心O旋轉(zhuǎn)到∠A’OB’的位置,你能發(fā)現(xiàn)哪些等量關系?為什么?根據(jù)旋轉(zhuǎn)的性質(zhì),將圓心角∠AOB繞圓心O旋轉(zhuǎn)
2024-11-18 17:44
【總結】圓周角和圓心角的關系一、選擇題1.在同圓中,同弦所對的圓周角()A.相等B.互補C.相等或互補D.互余2.如圖3-63所示,A,B,C,D在同一個圓上,四邊形ABCD的兩條對角線把四個內(nèi)角分成的8個角中,相等的角共有()A.2對
2024-11-28 17:50
【總結】 《圓周角與圓心角的關系》說課稿 今天我說課的內(nèi)容是北師大版九年級數(shù)學(下冊)第三章第三節(jié)《圓周角和圓心角的關系》的第一課時。下面從教材分析、教學方法、學法指導、教學過程、板書設計等五個方...
2025-04-03 12:24
【總結】圓周角和圓心角的關系(1)圓周角定理一、舊知回放:?.OBC答:相等.答:頂點在圓心的角叫圓心角.弧的度數(shù)的關系?23、(05年茂名)下列命題是真命題的是()1)垂直弦的直徑平分這條弦2)相等的圓心角所對的弧相等3)圓既是軸對稱圖形,還是中心對稱圖形A
2024-11-30 08:31
【總結】§圓周角和圓心角的關系(第二課時)學習目標:掌握圓周角定理幾個推論的內(nèi)容,會熟練運用推論解決問題.學習重點:圓周角定理幾個推論的應用.學習難點:理解幾個推論的”題設”和”結論”.學習方法:指導探索法.學習過程:一、舉例:【例1】用直角鋼尺檢查某一工件是否恰好是半圓環(huán)形,根
2024-11-29 07:47
【總結】北師大版九年級下冊數(shù)學圓周角:頂點在圓上,它的兩邊分別與圓還有另一個交點,像這樣的角,叫做圓周角.圓周角定理圓周角的度數(shù)等于它所對弧上的圓心角度數(shù)的一半.ABC●O●OABC●OABC●OABC情境導入本節(jié)目標,會熟練運用推論解決問題.2.培養(yǎng)學生觀察、分析及理解問題的能力
2025-06-12 01:19
【總結】北師大版九年級下冊數(shù)學()①垂直弦的直徑平分這條弦②相等的圓心角所對的弧相等③圓既是軸對稱圖形,又是中心對稱圖形A.①②B.①③C.②③D.①②③?答:相等.答:頂點在圓心的角叫圓心角.?B情境導入本節(jié)目標..
【總結】回顧與思考如圖1,∠AOB是角。OAB如圖2,AB=CD,則∠AOB與∠COD的大小關系是:。BAOCD圓心相等用心想一想,馬到功成在射門游戲中,球員射中球門的難易與他所處的位置B對球門AC的張角(∠
2024-11-18 19:08
【總結】圓周角和圓心角的關系(1)陳愛紅一、舊知回放:?.OBC答:相等.答:頂點在圓心的角叫圓心角.度數(shù)的關系?B3、(05年茂名)下列命題是真命題的是()1)垂直弦的直徑平分這條弦2)相等的圓心角所對的弧相等3)圓既是軸對稱圖形,還是中心對稱圖形
2024-11-12 02:37
【總結】課時課題:第三章圓3.圓周角和圓心角的關系第1課時課型:新授課教學目標:1.經(jīng)歷圓周角和圓心角的關系的探索、證明、應用的過程,養(yǎng)成自主探究、合作交流的學習習慣,體會分類、歸納等數(shù)學思想方法。2.理解圓周角的概念及圓周角和圓心角的關系。并能夠應用“圓周角與圓心角的關系”進行簡單的論證和計算.重點:經(jīng)歷探索“圓周角與圓心角的關系”的過程,理解“圓周角與圓心角
2025-06-09 23:11
【總結】圓周角和圓心角的關系練習一、填空題:,等邊三角形ABC的三個頂點都在⊙O上,D是上任一點(不與A、C重合),則∠(1)(2)(3),四邊形ABCD的四個頂點都在⊙O上,且AD∥BC,對角線AC與BC相交于點E,那么圖中有_________對全等三角形;________對相似比不等于1的相似三角
2025-03-24 04:37
【總結】初中數(shù)學資源網(wǎng)華師大九年級數(shù)學(下)第23章圓.圓周角和圓心角的關系-圓周角定理初中數(shù)學資源網(wǎng)探究活動:有關圓周角的度數(shù)1.探究半圓或直徑所對的圓周角等于多少度?2.90°的圓周角所對的弦是否是直徑?線段AB是⊙O的直徑,點C是⊙O上任
2024-11-06 19:12
【總結】圓周角和圓心角的關系(1)圓心角、弧、弦、弦心距之間的關系ABCDOABOA'B'O'在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等圓心角、弧、弦、弦心距之間的關系ABCDOABOA'B'O'在同圓或等圓中,
2024-11-30 02:41
【總結】足球射門●OBACBACDEDEEODCBA⌒在同圓或等圓中,同弧或等弧所對的圓周角相等圖中還有沒有圓周角相等?CBA直徑所對的圓周角是直角作一條直徑,過直徑的兩個端點作一個圓周角CBA作一個90°
【總結】OABC圓周角和圓心角的關系頂點在圓心的角叫圓心角.,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等。.OBC憶一憶若圓心角的頂點位置發(fā)生改變,可能出現(xiàn)哪些情形?·····想一想在射門游
2025-08-01 17:24