【總結(jié)】目錄上頁(yè)下頁(yè)返回結(jié)束習(xí)題課一、導(dǎo)數(shù)和微分的概念及應(yīng)用二、導(dǎo)數(shù)和微分的求法導(dǎo)數(shù)與微分第二章目錄上頁(yè)下頁(yè)返回結(jié)束一、導(dǎo)數(shù)和微分的概念及應(yīng)用?導(dǎo)數(shù):當(dāng)時(shí),為右導(dǎo)數(shù)當(dāng)時(shí),為左導(dǎo)數(shù)?微分:?關(guān)系:可導(dǎo)
2025-07-24 16:39
【總結(jié)】導(dǎo)數(shù)與微分一、導(dǎo)數(shù)的概念:::xxxxxx??????00,)()(00xfxxfy?????)()()(lim)()()(limlim)(000000導(dǎo)函數(shù)一般地:??????????????????????xxfxxfxf
2025-08-04 10:16
【總結(jié)】第四節(jié):高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問(wèn)題:變速直線運(yùn)動(dòng)的加速度.),(tfs?設(shè))()(tftv??則瞬時(shí)速度為的變化率對(duì)時(shí)間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點(diǎn)為函數(shù)則稱存在即處可導(dǎo)在點(diǎn)的導(dǎo)數(shù)如果函數(shù)xxfx
2025-02-21 12:49
【總結(jié)】導(dǎo)數(shù)與微分第二章導(dǎo)數(shù)與微分導(dǎo)數(shù)與微分§2-1導(dǎo)數(shù)的概念導(dǎo)數(shù)與微分一、導(dǎo)數(shù)的定義問(wèn)題的提出1000000()()()limlimlimtttSttStSttt?????????????????1、變速直線運(yùn)動(dòng)的速
2024-11-03 20:18
【總結(jié)】推廣一元函數(shù)微分學(xué)二元函數(shù)微分學(xué)注意:善于類比,區(qū)別異同二元函數(shù)微積分一、區(qū)域二、二元函數(shù)的概念二元函數(shù)的基本概念區(qū)域平面上滿足某個(gè)條件的一切點(diǎn)構(gòu)成的集合。平面點(diǎn)集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點(diǎn)集稱為平面區(qū)域,通常記作D。0xy1
2025-07-26 01:41
【總結(jié)】上頁(yè)下頁(yè)返回§二元函數(shù)的偏導(dǎo)數(shù)與全微分一、偏導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)三、全微分上頁(yè)下頁(yè)返回一、偏導(dǎo)數(shù)定義1設(shè)函數(shù)(,)zfxy?在點(diǎn)00(,)xy的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時(shí),相應(yīng)地函數(shù)有增量
2025-07-25 16:45
【總結(jié)】返回后頁(yè)前頁(yè)§4高階導(dǎo)數(shù)當(dāng)我們研究導(dǎo)函數(shù)的變化率時(shí)就產(chǎn)生了高階導(dǎo)數(shù).如物體運(yùn)動(dòng)規(guī)律為,()sst?它的運(yùn)動(dòng)速度是,而速度在時(shí)刻()vst??()()().atvtst?????t的變化率就是物體在時(shí)刻的加速度t返回返回
2025-08-02 10:51
【總結(jié)】高等數(shù)學(xué)課程相關(guān)?教材及相關(guān)輔導(dǎo)用書?《高等數(shù)學(xué)》第一版,肖筱南主編,林建華等編著,北京大學(xué)出版社.?《高等數(shù)學(xué)精品課程下冊(cè)》第一版,林建華等編著,廈門大學(xué)出版社,.《高等數(shù)學(xué)》第七版,同濟(jì)大學(xué)數(shù)學(xué)教研室主編,高等教育出版社,.《高等數(shù)學(xué)學(xué)習(xí)輔導(dǎo)與習(xí)題選解》(同濟(jì)第七版上下合訂
2025-08-05 18:40
【總結(jié)】1總復(fù)習(xí)二導(dǎo)數(shù)與微分一、導(dǎo)數(shù)與微分的定義????????討論已知,000,0,00,1sin???????????ggxxxxgxf??.0處的連續(xù)性和可微性在?xxf例1????xxgxfxx1sinlimlim00????解??
2025-07-25 07:37
【總結(jié)】§8.高階導(dǎo)數(shù)與高階微分YunnanUniversity1一、高階導(dǎo)數(shù)及其運(yùn)算法則,其速度物體運(yùn)動(dòng)規(guī)律)(tss?.lim)(0tstsvt???????一階導(dǎo)數(shù)).())(()(lim)(0tststvtvtat?????????????時(shí)間內(nèi)在t?于是,212gts?自由落
2025-05-14 22:24
【總結(jié)】求導(dǎo)法則基本公式導(dǎo)數(shù)xyx????0lim微分xydy???關(guān)系)(xodyydxydyydxdy??????????高階導(dǎo)數(shù)一、主要內(nèi)容1、導(dǎo)數(shù)的定義即或記為處的導(dǎo)數(shù)在點(diǎn)并稱這個(gè)極限為函數(shù)處可導(dǎo)在點(diǎn)則稱函數(shù)時(shí)的極限存在之比當(dāng)與如果取得增
2025-07-25 05:41
【總結(jié)】?基本求導(dǎo)公式?導(dǎo)數(shù)的四則運(yùn)算法則?復(fù)合函數(shù)的求導(dǎo)法xuxdydyduyyudxdudx???????或或復(fù)習(xí)[f(?(x))]?=f?(u)??(x)=f?(?(x))??(x)前面我們學(xué)習(xí)了函數(shù)的各種求導(dǎo)法。顯然y=x2的導(dǎo)數(shù)是y?=2x,而
2025-05-12 21:33
【總結(jié)】返回后頁(yè)前頁(yè)導(dǎo)數(shù)是微分學(xué)的核心概念,是研究函數(shù)§1導(dǎo)數(shù)的概念一、導(dǎo)數(shù)的概念化率”,就離不開(kāi)導(dǎo)數(shù).三、導(dǎo)數(shù)的幾何意義二、導(dǎo)函數(shù)態(tài)的有力工具.無(wú)論何種學(xué)科,只要涉及“變與自變量關(guān)系的產(chǎn)物,又是深刻研究函數(shù)性返回返回后頁(yè)前頁(yè)一、導(dǎo)數(shù)的
2024-08-21 19:14
【總結(jié)】導(dǎo)數(shù)的概念導(dǎo)數(shù)的運(yùn)算微分結(jié)束第2章導(dǎo)數(shù)與微分前頁(yè)結(jié)束后頁(yè)對(duì)于勻速直線運(yùn)動(dòng)來(lái)說(shuō),其速度公式為:?路程速度時(shí)間一物體作變速直線運(yùn)動(dòng),物體的位置與時(shí)間00()()ssttst?????的函數(shù)關(guān)系為,稱為位置
2024-10-05 00:39