【總結(jié)】Chapt5導(dǎo)數(shù)和微分15世紀(jì)文藝復(fù)興以后的歐洲,資本主義逐漸發(fā)展,采礦冶煉、機(jī)器發(fā)明、商業(yè)交往、槍炮制造、遠(yuǎn)洋航海、天象觀測等大量實(shí)際問題,給數(shù)學(xué)提出了前所未有的亟待解決的新課題。其中有兩類問題導(dǎo)致了導(dǎo)數(shù)概念的產(chǎn)生:(1)求變速運(yùn)動的瞬時(shí)速度;(2)求曲線上一點(diǎn)處的切線。這兩類問題都?xì)w結(jié)為變量變化的快慢程度,即變化率問題。
2024-08-20 09:14
【總結(jié)】北京四中龍門網(wǎng)絡(luò)教育技術(shù)有限公司BeijingEtiantianNetEducationalTechnologyCo.,Ltd讓更多的孩子得到更好的教育2020/12/131導(dǎo)數(shù)與微分一、導(dǎo)數(shù)的概念:::北京四中龍門網(wǎng)絡(luò)教育技術(shù)有限公司BeijingEtiantianNetEducatio
2024-11-06 18:56
【總結(jié)】目錄上頁下頁返回結(jié)束習(xí)題課一、導(dǎo)數(shù)和微分的概念及應(yīng)用二、導(dǎo)數(shù)和微分的求法導(dǎo)數(shù)與微分第二章目錄上頁下頁返回結(jié)束一、導(dǎo)數(shù)和微分的概念及應(yīng)用?導(dǎo)數(shù):當(dāng)時(shí),為右導(dǎo)數(shù)當(dāng)時(shí),為左導(dǎo)數(shù)?微分:?關(guān)系:可導(dǎo)
2025-07-25 05:40
2025-07-24 16:39
【總結(jié)】導(dǎo)數(shù)與微分一、導(dǎo)數(shù)的概念:::xxxxxx??????00,)()(00xfxxfy?????)()()(lim)()()(limlim)(000000導(dǎo)函數(shù)一般地:??????????????????????xxfxxfxf
2025-08-04 10:16
【總結(jié)】第四節(jié):高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動的加速度.),(tfs?設(shè))()(tftv??則瞬時(shí)速度為的變化率對時(shí)間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點(diǎn)為函數(shù)則稱存在即處可導(dǎo)在點(diǎn)的導(dǎo)數(shù)如果函數(shù)xxfx
2025-02-21 12:49
【總結(jié)】第二節(jié)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)?一、偏導(dǎo)數(shù)的定義及其計(jì)算法?二、高階偏導(dǎo)數(shù)定義設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時(shí),相應(yīng)地函數(shù)有增量),(),(0000yxfyxxf?
2025-05-07 22:29
【總結(jié)】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)與隱函數(shù)的導(dǎo)數(shù)第二章三、隱函數(shù)求導(dǎo)一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動機(jī)動目錄上頁下頁返回
2025-05-12 21:33
【總結(jié)】導(dǎo)數(shù)與微分第二章導(dǎo)數(shù)與微分導(dǎo)數(shù)與微分§2-1導(dǎo)數(shù)的概念導(dǎo)數(shù)與微分一、導(dǎo)數(shù)的定義問題的提出1000000()()()limlimlimtttSttStSttt?????????????????1、變速直線運(yùn)動的速
2024-11-03 20:18
【總結(jié)】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運(yùn)動),(tss?)()(tstv??則瞬時(shí)速度為的變化率對時(shí)間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點(diǎn)為函數(shù)則稱存在即處可導(dǎo)在點(diǎn)的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【總結(jié)】1高階導(dǎo)數(shù)第三節(jié)一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)求法舉例三、小結(jié)及作業(yè)2一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動的加速度.),(tss?設(shè)).()(tstv??則瞬時(shí)速度為的變化率,對時(shí)間是速度因?yàn)榧铀俣萾va定義.)())((,)()(lim))((,)()(處的二階導(dǎo)數(shù)在點(diǎn)為則稱存在即處可
2025-05-07 12:10
【總結(jié)】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)第二章一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動機(jī)動目錄上頁下頁返回結(jié)束定義.若函數(shù)
2025-05-05 12:11
【總結(jié)】§3.高階導(dǎo)數(shù)函數(shù)f(x)的導(dǎo)數(shù)f'(x)又稱為f(x)的一階導(dǎo)數(shù)(導(dǎo)函數(shù)),仍可導(dǎo),若)(xf?存在,即xxfxxfx????????)()(lim0則稱其為y=f(x)的二階導(dǎo)數(shù),記為,)(,xfy?????22xdyd或.)(xd
2025-05-05 08:14
【總結(jié)】設(shè)y=f(x),若y=f(x)可導(dǎo),則f'(x)是x的函數(shù).若f'(x)仍可導(dǎo),則可求f'(x)的導(dǎo)數(shù).記作(f'(x))'=f''(x).稱為f(x)的二階導(dǎo)數(shù).若f''(x)仍可導(dǎo),則又可求f''(x)的導(dǎo)數(shù),….
2025-05-05 12:38
【總結(jié)】一、偏導(dǎo)數(shù)的概念二、高階偏導(dǎo)數(shù)三、可微與偏導(dǎo)數(shù)的關(guān)系*多元函數(shù)的偏導(dǎo)數(shù)和全微分四、全微分在二元函數(shù)z=f(x,y)中,有兩個(gè)自變量x,y,但若固定其中一個(gè)自變量,比如,令y=y0,而讓x變化.則z成為一元函數(shù)z=f(x,y0),我們可用討論一元函數(shù)的方法來討論它
2025-08-04 18:32