【總結(jié)】考基自主導(dǎo)學(xué)考向探究導(dǎo)析考題專項(xiàng)突破活頁(yè)限時(shí)訓(xùn)練第2講排列與組合考基自主導(dǎo)學(xué)考向探究導(dǎo)析考題專項(xiàng)突破活頁(yè)限時(shí)訓(xùn)練【2022年高考會(huì)這樣考】1.考查排列組合的概念及其公式的推導(dǎo).2.考查排列組合的應(yīng)用.【復(fù)習(xí)指導(dǎo)】復(fù)習(xí)時(shí)要掌握好基本計(jì)算公式和基本解題指導(dǎo)思想,掌握一些排列組合的基本模式題的解決方法,
2025-08-04 17:23
【總結(jié)】(二)組合,掌握組合數(shù)的計(jì)算公式;教學(xué)目標(biāo):.重點(diǎn):難點(diǎn):理解組合的意義.掌握組合數(shù)的計(jì)算公式.,培養(yǎng)學(xué)生是辯證唯物主義觀點(diǎn).236A?問(wèn)題一:從甲、乙、丙3名同學(xué)中選出2名去參加某天的一項(xiàng)活動(dòng),其中1名同學(xué)參加上午的活動(dòng),1名
2025-08-04 18:22
【總結(jié)】WORD格式可編輯排列組合方法篇1、兩個(gè)原理及區(qū)別(加法原理)(乘法原理)2、排列數(shù)公式排列數(shù)公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會(huì)推以下恒等式(1);(2);(3);(4)
2025-08-05 07:38
【總結(jié)】排列組合專題訓(xùn)練1.(2014?四川)六個(gè)人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ?。.192種B.216種C.240種D.288種考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題.菁優(yōu)網(wǎng)版權(quán)所有專題:應(yīng)用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結(jié)論.
2025-08-05 07:27
【總結(jié)】高二數(shù)學(xué)集體備課學(xué)案與教學(xué)設(shè)計(jì)章節(jié)標(biāo)題選修2-3排列組合專題計(jì)劃學(xué)時(shí)1學(xué)案作者楊得生學(xué)案審核張愛(ài)敏高考目標(biāo)掌握排列、組合問(wèn)題的解題策略三維目標(biāo)一、知識(shí)與技能。?;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題。提高學(xué)生解決問(wèn)題分析問(wèn)題的能力??.二、過(guò)程與方法通過(guò)問(wèn)題的探究,體會(huì)知識(shí)的類比遷移。以
2025-08-05 06:55
【總結(jié)】排列組合應(yīng)用題數(shù)學(xué)教研組盛建芳復(fù)習(xí)回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2024-08-24 23:43
【總結(jié)】課時(shí)作業(yè)(一)1.衡水二中高一年級(jí)共8個(gè)班,高二年級(jí)共6個(gè)班,從中選一個(gè)班級(jí)擔(dān)任學(xué)校星期一早晨升旗任務(wù),共有的安排方法種數(shù)是( )A.8 B.6C.14 D.48答案 C解析 一共有14個(gè)班,從中選1個(gè),∴共有14種.2.教學(xué)大樓共有四層,每層都有東西兩個(gè)樓梯,由一層到四層共有的走法種數(shù)是( )A.32 B.23C.42 D.2
2025-07-23 03:44
【總結(jié)】排列組合復(fù)習(xí)二、重點(diǎn)難點(diǎn)三、綜合練習(xí)四、復(fù)習(xí)建議一、知識(shí)結(jié)構(gòu)基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問(wèn)題一、知識(shí)結(jié)構(gòu)二、重點(diǎn)難點(diǎn)1.兩個(gè)基本原理
2024-11-18 00:34
【總結(jié)】《組合數(shù)學(xué)》第一章組合數(shù)學(xué)基礎(chǔ)第1章組合數(shù)學(xué)基礎(chǔ)1.排列組合的基本計(jì)數(shù)問(wèn)題2.多項(xiàng)式系數(shù)的計(jì)算及其組合意義3.排列組合算法緒論(一)背景起源:數(shù)學(xué)游戲幻方問(wèn)題:給定自然數(shù)1,2,…,n2,將其排列成n階方陣,要求每行、每列和每條對(duì)角線上n個(gè)數(shù)字之和都相等。這樣的n階方陣稱為n階幻方
2025-07-24 23:18
【總結(jié)】一,映射與排列組合問(wèn)題變式:同(2)257對(duì)集合A中元素進(jìn)行分類。二,排列組合中的映射思維通過(guò)集合A與另一個(gè)集合B之間的映射關(guān)系,將對(duì)集合A中元素的計(jì)數(shù)問(wèn)題轉(zhuǎn)化為對(duì)集合B的計(jì)數(shù)。且A與B是一一對(duì)應(yīng)關(guān)系。三,構(gòu)造法解排列組合題例6,有若干名棋手參加的單循環(huán)制象棋比賽,其中有2名棋手各比賽
2024-11-10 03:08
【總結(jié)】例“歡樂(lè)今宵”節(jié)目中,拿出兩個(gè)信箱.其中存放著先后兩次競(jìng)猜中成績(jī)優(yōu)秀的觀眾來(lái)信.甲信箱中有30封,乙信箱中有20封.現(xiàn)由主持人抽獎(jiǎng)確定幸運(yùn)觀眾,若先確定一名“幸運(yùn)之星”,然后再?gòu)膬尚畔渲懈鞔_定一名幸運(yùn)伙伴,有多少種不同的結(jié)果?練習(xí).如圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一種
2024-11-09 06:20
【總結(jié)】排列組合常見(jiàn)題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問(wèn)題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過(guò)“住店法”可順利解題,在這類問(wèn)題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個(gè)底數(shù),哪個(gè)是指數(shù)【例1】(1)有4名學(xué)生報(bào)名參加數(shù)學(xué)、物理、化學(xué)競(jìng)賽,每人限報(bào)一科,有多少種不同的報(bào)名方法?(2)有4名學(xué)生參加爭(zhēng)奪數(shù)學(xué)、
2025-08-04 18:28
【總結(jié)】排列組合復(fù)習(xí)課教學(xué)設(shè)計(jì)------龍巖二中郭小峰排列組合復(fù)習(xí)課一.教學(xué)內(nèi)容分析:、組合都是研究事物在某種給定的模式下所有可能的配置的數(shù)目問(wèn)題,它們之間的主要區(qū)別在于是否要考慮選出元素的先后順序,不需要考慮順序的是組合問(wèn)題,需要考慮順序的是排列問(wèn)題,排列是在組合的基礎(chǔ)上對(duì)入選的元素進(jìn)行排隊(duì),因此,分析解決排列組合問(wèn)題的基本思維是“先組,后排”.,要注意四點(diǎn):(1)
2025-05-01 04:21
【總結(jié)】.公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【總結(jié)】排列組合綜合問(wèn)題教學(xué)目標(biāo)通過(guò)教學(xué),學(xué)生在進(jìn)一步加深對(duì)排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問(wèn)題和解決問(wèn)題的能力,學(xué)會(huì)分類討論的思想.教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):排列、組合綜合題的解法.難點(diǎn):正確的分類、分步.教學(xué)用具投影儀.教學(xué)過(guò)程設(shè)計(jì)(一)引入師:現(xiàn)在我們大家已經(jīng)學(xué)習(xí)和掌握了一些排列問(wèn)題和組
2025-03-25 02:37