【總結(jié)】圓錐曲線橢圓雙曲線拋物線定義標準方程幾何性質(zhì)直線與圓錐曲線的位置關(guān)系一、知識點框架雙曲線的定義:1212||||||2,(02||)MFMFaaFF????橢圓的定義:|)|2(,2||||2121FFaaM
2025-08-16 02:16
【總結(jié)】圓錐曲線與方程一、選擇題1.雙曲線3x2-y2=9的實軸長是( )A.2B.2C.4D.42.以-=-1的焦點為頂點,頂點為焦點的橢圓方程為( )A.+=1B.+=1
2025-04-04 05:07
【總結(jié)】知識指要橢圓注1:總有ab0,c2=a2-b2xOyF1F2MxOyF1F2M注2:判斷橢圓標準方程的焦點在哪個軸上的準則:焦點在分母大的那個軸上注3:橢圓上到焦點的距離最大和最小的點是橢圓長軸的兩個端點知識指要橢圓1、橢圓第
2024-11-09 23:28
【總結(jié)】專題十六圓錐曲線1.雙曲線的焦距是10,則實數(shù)的值是()A.B.4C.16D.812.橢圓的右焦點到直線的距離是()A.B.C.1D.3.若雙曲線的一條準線與拋物線的準線重合,則雙曲線的離心率為()A.
2024-08-27 17:18
【總結(jié)】第五節(jié)圓錐曲線的綜合應(yīng)用1.圓錐曲線的統(tǒng)一定義:平面內(nèi)到__________________________________________________________________是圓錐曲線,當________時,軌跡是橢圓;當________時,軌跡是雙曲線;當________時,軌跡表示拋物線,定點F是圓錐曲線的一個________
2024-11-12 18:19
【總結(jié)】圓錐曲線的常用解法成都列五中學:李興文例1動點P(x,y)到定點A(3,-4)的距離比它到定直線x=-5的距離少4。求:動點P的軌跡方程。O3-4-5Axy?m[解法]利用定義解題-1n作直線L:x=-1則點
2024-11-09 08:10
【總結(jié)】高二(理科)數(shù)學(圓錐曲線)同步練習題一、選擇題1.下面雙曲線中有相同離心率,相同漸近線的是( )A.-y2=1,-=1B.-y2=1,y2-=1C.y2-=1,x2-=1D.-y2=1,-=12.橢圓+=1的焦點為F1、F2,AB是橢圓過焦點F1的弦,則△ABF2的周長是( )A.20B.12C.10D.6
2025-04-04 05:17
【總結(jié)】四川大學家教協(xié)會內(nèi)部教材,請勿外傳。VIP教研組版權(quán)所有未經(jīng)允許,請勿外傳。第11.橢圓(1)橢圓概念平面內(nèi)與兩個定點1F、2F的距離的和等于常數(shù)2a(大于21||FF)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離2c叫橢圓的焦距
2025-01-08 20:02
【總結(jié)】高中新課標數(shù)學選修(1-1)圓錐曲線與方程測試題一、選擇題1.橢圓222312xy??的兩焦點之間的距離為()A.210B.10C.22D.2答案:C2.橢圓2214xy??的兩個焦點為12FF,,過1F作垂直于x軸的直線與橢圓相交,一個交點為P,則2
2024-11-11 23:23
【總結(jié)】解析幾何圓錐曲線―概念、方法、題型、及應(yīng)試技巧總結(jié)解析幾何??22124A53B8C5D161.xymm??橢圓的焦距等于,則的值為.或... 解析幾何4415441
2025-01-08 00:14
【總結(jié)】......圓錐曲線專題練習一、選擇題,則到另一焦點距離為()A.B.C.D.2.若橢圓的對稱軸為
2025-06-24 02:09
【總結(jié)】高二文科數(shù)學圓錐曲線基礎(chǔ)訓練1.k為何值時,直線y=kx+2和橢圓有兩個交點()A.—或k或k&l
2025-07-23 15:14
【總結(jié)】高二年級第一學期階段數(shù)學試卷(選修2-1部分)一、選擇題1.拋物線y2=ax(a≠0)的焦點到其準線的距離是( )A. B.C.|a|D.-2.設(shè)P是雙曲線上一點,雙曲線的一條漸近線方程為、F2分別是雙曲線的左、右焦點,若,
2025-06-23 08:17
【總結(jié)】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2025-07-25 00:15
【總結(jié)】平面內(nèi)到兩定點F1、F2距離之差的絕對值等于常數(shù)2a(2a|F1F2|)的點的軌跡復(fù)習回顧表達式|PF1|+|PF2|=2a(2a|F1F2|)1
2024-11-12 17:25