【總結】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階
2025-06-18 05:00
【總結】LOGO解直角三角形復習講課者:倪先德威遠縣第一初級中學導入ABCabc在直角三角形中,由已知元素求出所有未知元素的過程,叫解直角三角形.什么叫解直角三角形?知識網(wǎng)絡直角三角形的邊角關系解直角三角形已知一邊一
2025-08-01 14:01
【總結】à300450600sinacosatana1cota12223332223213333211、2、在直角三角形中,由已知元素求未知元素的過程叫:解直角三角形(1)三邊之間的關系:a2+b2=c2(勾股定理);解直角三
2024-11-24 13:26
【總結】解直角三角形(1)要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的角α一般要滿足50°≤α≤75°.現(xiàn)有一個長6m的梯子.問:(1)使用這個梯子最高可以安全攀上多高的平房?(精確到)這個問題歸結為:在Rt△ABC中,已知∠A=75°,斜邊AB=6,求BC的長角α
2024-11-24 17:04
【總結】4解直角三角形第1課時解直角三角形第一章直角三角形的邊角關系提示:點擊進入習題答案顯示67892CCD10B1234見習題見習題見習題D5B11121314見習題見習題見習題見習題1.在直角三角形中,除直角外,共有______個元素,即
2024-12-28 05:55
【總結】(3)如圖,在進行測量時,從下向上看,視線與水平線的夾角叫做仰角;從上往下看,視線與水平線的夾角叫做俯角.練習1如圖,為了測量電線桿的高度AB,在離電線桿C處,用高儀CD測得電線桿頂端B的仰角a=22°,
2024-11-10 13:07
【總結】解直角三角形的應用(2)在視線與水平線所成的角中,視線在水平線的上方的角叫做仰角。視線在水平線下方的角叫做俯角。仰角與俯角都是視線與水平線所成的角。一、知識回顧鉛垂線俯角仰角水平線視線視線鞏固練習1、如圖,某景區(qū)山的高度為500米,在山角的大門A處測得C處的仰角為45
2025-05-05 05:36
【總結】第一章直角三角形的邊角關系解直角三角形1課堂講解?解直角三角形2課時流程逐點導講練課堂小結作業(yè)提升(2)兩銳角之間的關系∠A+∠B=90°(3)邊角之間的關系(1)三邊之間的關系222cba??
2024-12-28 02:38
【總結】解直角三角形高密市城南中學李宗洲(說課案例)標注點擊每頁幻燈片的圖標,則幻燈片翻頁一教材分析單元知識內容:1直角三角形的邊角關系.2應用勾股定理、Rt△的兩銳角互余及銳角三角函數(shù)解直角三角形.3應用解直角三角形的有關知識解決一些簡單的實際問題(包括
2024-11-10 12:43
【總結】解直角三角形的應用第二課時第二章,然后利用解直角三角形的知識,明確已知量和未知量,選擇合適的三角比,從而求得未知量.從高處觀測低處的目標時,視線與水平線所成的銳角叫做俯角.1.從低處觀測高處的目標時,視線與水平線所成的銳角叫做仰角;溫故知新ABFDCEABF
2025-06-13 12:11
【總結】解直角三角形的應用解直角三角形的應用第一課時第一課時第二章tanA=ba∠A+∠B=90°;a2+b2=c2;(3)角與邊之間的關系:(2)邊之間的關系:(1)角之間的關系:sinA=ca,cosA=cb,2.如果知道直角三角形的幾個元素就可以求其他的元素?有幾種情況?兩個元素
2025-06-14 12:02
【總結】解直角三角形的應用第三課時第二章溫故知新3.用解直角三角形的知識解決有關斜坡的問題.1.2.課堂小結
【總結】解直角三角形的應用第四課時第二章3.用解直角三角形的知識解決有關斜坡的問題.1.2.溫故知新在兩個或多個直角三角形中,根據(jù)它們之間的邊角關系,利用解直角三角形的知識解決實際問題.抽象出實際問題中的直角三角形,或通過作輔助線構造直角三角形.1.2.課堂小結
【總結】解直角三角形(4)1、如圖,在Rt△ABC中:22復習ABC(1)∠A=30°,AB=4,解這個直角三角形;(2)tanA=,求∠A的大小。導入如圖,有三個斜坡,其坡面與水平面的夾角分別為α、β、γ,且αβγ
2024-11-21 00:14
【總結】ABbac┏C復習回顧1、直角三角形兩銳角之間有何關系?2、直角三角形三邊之間有何關系?3、直角三角形的邊角之間有何關系?4、你能說出什么叫解直角三角形嗎?解直角三角形的依據(jù)活動一tanA=absinA=aca2+b2=c2(勾股定理);
2025-01-15 10:49