freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

線性代數(shù)20xx01考試考前復(fù)習(xí)資料-wenkub.com

2024-08-31 21:16 本頁面
   

【正文】 解計算題,要能做幾步就做幾步,寧可 “ 會不全 ” ,也不要 “ 全不會 ” 。 假設(shè)驗證 : 有些判斷題,如果直接判斷有困難,有時可以假設(shè)一個或幾個具體的數(shù),驗證結(jié)論是否成立,再作出判斷。 分析推理 : 即根據(jù)有關(guān)的數(shù)學(xué)知識,通過分析推理,作出判斷。 數(shù)學(xué)填空題的特點是只注重結(jié)果,不考慮過程,雖然省去過 程給解題帶來了速度,但是一旦結(jié)果有誤就“全軍覆沒”。單選題常用的方法有淘汰法和直接法。正交變換化二次型為標(biāo)準(zhǔn)型的方法。 ( 2) 相似矩陣 矩陣相似和約當(dāng)型矩陣的概念。施密特正交化方法。 第四章 線性空間 ( 1) 線性空間與基 線性空間的概念,線性空間的基,向量的加法和數(shù)乘運算。 運用矩陣的初等行變換化矩陣為簡化形階梯形矩陣求極大無關(guān)組及向量組的秩。 ( 4) 極大無關(guān)組 極大無關(guān)組的概念;極大無關(guān)組與向量組的等價關(guān)系;極大無關(guān)組之間的等價關(guān)系 ( 5) 秩 向量組的秩的概念。分量已給出的向量組的線性相關(guān)和線性無關(guān)性的判定方法。數(shù)乘向量法則及運算律。 非齊次線性方程組解的判定條件。將矩陣化為初等變換標(biāo)準(zhǔn)形。 ( 3) 逆矩陣 逆矩陣概念,矩陣可逆的充分必要條件;求可逆矩陣的逆矩陣。 ( 3) 行列式的計算 二階、三階行列式的計算;用降階法計算數(shù)字元素行列式的計算方法。 1 第一部分 考核方式介紹 一、 考核形式 : 閉卷 二、 考試時間 : 2 小時 ?!?線性代數(shù) 》 202001 考試考前復(fù)習(xí)資料 第一部分 考核方式介紹 ................................錯誤 !未定義書簽。 三、 試卷結(jié)構(gòu) : 1.總分: 100 分 2. 題型分布: 單選題 7 小題,每小題 2 分,共 14 分; 填空題 2 小題,每小題 3 分,共 6 分 ; 判斷題 4 小題,每小題 5 分,共 20 分 ,判斷題要求寫出理由; 計算題、證明題(計算題 5 小題,證明題 1 道),每小題 10 分 ,共 60 分。 ( 4) 克萊姆法則 克萊姆法則;齊次線性方程組有非零解的條件。求解矩陣方程。初等方陣的概念,初等方陣左乘矩陣與右乘矩陣的性質(zhì) 及其 運用。齊次線性方程組解的判定條件。 n維向量空間概念。向量組的線性性質(zhì)(線性相關(guān)向量組中至少有一個向量可由其余向量線性表出;若 ???? , 21 s? 線性相關(guān),而s??? , 21 ? 線性無關(guān),則 ? 可由 s??? , 21 ? 唯一線性表出)。矩陣秩的定義。 ( 6) 線性代數(shù)組解的結(jié)構(gòu) 齊次線性方程組解的性質(zhì)和非齊次線性方程的解和其導(dǎo)出的齊次線性方程組的解的關(guān)系。線性空間維數(shù)的概念。 ( 5) 正交矩陣 正交矩陣的概念及性質(zhì)。判定矩陣相似于對角形矩陣的充分必要條件和充分條件,對角矩陣 , 使矩陣相似于對角矩陣的過渡矩陣。 ( 4) 二次型的標(biāo)準(zhǔn)型 用配方法化二次型為標(biāo)準(zhǔn)型。淘汰法的特點是,根據(jù)已學(xué)知識經(jīng)過判斷去掉不合題意者,剩下的一個就是正確的答案。結(jié)果有誤通常都是“會而不對,對而不全” 所致,因此 解答填空題時要注意:審題仔細,書寫規(guī)范。 計算求解 : 即根據(jù)題目的條件,通過計算等過程,求出正確答案,再作判斷。 在實際解答判斷題時,究竟選用哪種方法,要根據(jù)題目的具體特點來決定。對于一眼就看出結(jié)論的題,也要寫出步驟,要一步不少,一字不落。 二、 練習(xí)題 附:參考答案 1. 初等矩陣與初等矩陣之積仍為初等矩陣 . 解答 : 不正確 . 例如 ????????????????????110010001,100010011都是初等矩陣,但 ???????????????????????????????110010011110010001100010011不是初等矩陣 . 2.“ 兩個 n 階可逆 矩陣的和為可逆矩陣 ” 是真命題 . 解答 : 命題不真 . 因為若 A 可逆,則 A? 也可逆而 0)( ??? AA 為不可逆 . 3. 向量組 ???????????????????????????????0010,000221 ??,
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1