【總結(jié)】復(fù)合函數(shù)的單調(diào)性和奇偶性 1、復(fù)合函數(shù)的概念 如果是的函數(shù),又是的函數(shù),即,,那么關(guān)于的函數(shù)叫做函數(shù)和的復(fù)合函數(shù),其中是中間變量,自變量為函數(shù)值為?!±纾汉瘮?shù)是由和復(fù)合而成。2、復(fù)合函數(shù)單調(diào)性復(fù)合函數(shù)單調(diào)性判定方法:定理:設(shè)函數(shù)u=g(x)在區(qū)間M上有意義,函數(shù)y=f(u)在區(qū)間N上有意義,且當(dāng)X∈M時(shí),u∈N。增函數(shù)增函數(shù)增函數(shù)增函
2025-04-04 04:22
【總結(jié)】函數(shù)單調(diào)性、奇偶性練習(xí)一、選擇題1.若函數(shù)f(x)=x(x∈R),則函數(shù)y=-f(x)在其定義域內(nèi)是( )A.單調(diào)遞增的偶函數(shù) B.單調(diào)遞增的奇函數(shù)C.單調(diào)遞減的偶函數(shù) D.單調(diào)遞減的奇函數(shù)2.下列函數(shù)中是奇函數(shù)且在(0,1)上遞增的函數(shù)是( )A.f(x)=x+ B.f(x)=x2-C.f(x)= D.f(x)=x33.已知y=f(x)是定義在
2025-06-18 20:37
【總結(jié)】 函數(shù)的單調(diào)性和奇偶性一、目標(biāo)認(rèn)知學(xué)習(xí)目標(biāo): 、奇偶性定義; 、證明函數(shù)在給定區(qū)間上的單調(diào)性; ??; .重點(diǎn)、難點(diǎn): ??; .二、知識(shí)要點(diǎn)梳理 (1)增函數(shù)、減函數(shù)的概念 一般地,設(shè)函數(shù)f(x)的定義域?yàn)锳,區(qū)間 如果對(duì)于M內(nèi)的任意兩個(gè)自變量的值x1、x2,當(dāng)x1<x2時(shí),都
2024-08-14 02:38
【總結(jié)】函數(shù)的單調(diào)性與奇偶性1.若為偶函數(shù),則下列點(diǎn)的坐標(biāo)在函數(shù)圖像上的是A.B.C.D.2.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是A.B.C.3.下列判斷中正確的是
2025-03-24 12:17
【總結(jié)】一、單調(diào)性二、奇偶性三、周期性四、有界性第三節(jié)函數(shù)的幾種特性一、單調(diào)性定義設(shè)函數(shù)y=f(x)在數(shù)集X(X可以是f(x)的定義域也可以是定義域的一部分).如果對(duì)于任意的,當(dāng)時(shí),均有則稱函數(shù)y=f(x)在區(qū)間X上單調(diào)增加(或單調(diào)減少)
2024-10-12 14:11
【總結(jié)】增函數(shù),減函數(shù)的定義:設(shè)函數(shù)f(x)的定義域?yàn)镮如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值x,x,當(dāng)xx時(shí),都有f(x)f(x),那么就說(shuō)f(x)在這個(gè)區(qū)間上是增函數(shù).111222如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值x,x,當(dāng)x
2024-10-19 11:54
【總結(jié)】1、已知的定義域?yàn)镽,且對(duì)任意實(shí)數(shù)x,y滿足,求證:是偶函數(shù)。2、已知f(x)是定義在(-∞,+∞)上的不恒為零的函數(shù),且對(duì)定義域內(nèi)的任意x,y,f(x)都滿足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判斷f(x)的奇偶性,并說(shuō)明理由.3、函數(shù)f(x)對(duì)任意x?y∈R,總有f(x)+f(y)=f(x+y),且當(dāng)x0時(shí),
2025-06-19 04:49
【總結(jié)】函數(shù)單調(diào)性、奇偶性、對(duì)稱性、周期性解析一、函數(shù)的單調(diào)性1.單調(diào)函數(shù)與嚴(yán)格單調(diào)函數(shù)設(shè)為定義在上的函數(shù),若對(duì)任何,當(dāng)時(shí),總有(ⅰ),則稱為上的增函數(shù),特別當(dāng)且僅當(dāng)嚴(yán)格不等式成立時(shí)稱為上的嚴(yán)格單調(diào)遞增函數(shù)。(ⅱ),則稱為上的減函數(shù),特別當(dāng)且僅當(dāng)嚴(yán)格不等式成立時(shí)稱為上的嚴(yán)格單調(diào)遞減函數(shù)。2.函數(shù)單調(diào)的充要條件★若為區(qū)間上的單調(diào)遞增函數(shù),、為區(qū)間內(nèi)兩任意值,那么有:或
2025-06-16 08:23
【總結(jié)】函數(shù)的單調(diào)性、奇偶性基礎(chǔ)卷選擇題1.若函數(shù)是奇函數(shù),則m的取值是(?。 ? 2.已知函數(shù)y=f(x)在(-3,0)上是減函數(shù),又y=f(x-3)是偶函數(shù),則下列結(jié)論正確的是(?。〢.
2024-08-13 16:22
【總結(jié)】第十二課時(shí)函數(shù)的單調(diào)性和奇偶性【學(xué)習(xí)導(dǎo)航】學(xué)習(xí)要求:1、熟練掌握函數(shù)單調(diào)性,并理解復(fù)合函數(shù)的單調(diào)性問(wèn)題。2、熟練掌握函數(shù)奇偶性及其應(yīng)用。3、學(xué)會(huì)對(duì)函數(shù)單調(diào)性,奇偶性的綜合應(yīng)用。【精典范例】一、利用函數(shù)單調(diào)性求函數(shù)最值例1、已知函數(shù)y=f(x)對(duì)任意x,y∈R均為f(x)+f(y)=f(x+y),且當(dāng)x0時(shí),f(x)0,f(1)=-.(1
2025-06-07 23:22
【總結(jié)】函數(shù)的性質(zhì)知識(shí)要點(diǎn)一、函數(shù)的奇偶性1.定義:如果對(duì)于函數(shù)f(x)定義域內(nèi)的任意x都有f(-x)=-f(x),則稱f(x)為奇函數(shù);如果對(duì)于函數(shù)f(x)定義域內(nèi)的任意x都有f(-x)=f(x),則稱f(x)為偶函數(shù)。如果函數(shù)f(x)不具有上述性質(zhì),則f(x),則f(x)既是奇函數(shù),又是偶函數(shù)。注意:(1)函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì)
2025-06-18 20:33
【總結(jié)】數(shù)學(xué)高中數(shù)學(xué)必修1第二章函數(shù)單調(diào)性和奇偶性專項(xiàng)練習(xí)一、函數(shù)單調(diào)性相關(guān)練習(xí)題1、(1)函數(shù),{0,1,2,4}的最大值為_____.(2)函數(shù)在區(qū)間[1,5]上的最大值為_____,最小值為_____.2、利用單調(diào)性的定義證明函數(shù)在(-∞,0)上是增函數(shù).3、判斷函數(shù)在(-1,+∞)上的單調(diào)性,并給予證明.4、畫出函數(shù)的圖像,并指出函數(shù)的單調(diào)區(qū)間.5、已
2025-06-22 01:09
【總結(jié)】1yx2-2-14321-13-2-31yx2-2-14321-1-2-3OOx-3-2-10123f(x)=x20994411f(-x)f(x)=··-xxx-3-2-10123f(x
2024-11-09 23:27
【總結(jié)】......函數(shù)單調(diào)性、奇偶性、周期性和對(duì)稱性的綜合應(yīng)用例1、設(shè)f(x)是定義在R上的奇函數(shù),且的圖象關(guān)于直線對(duì)稱,則f(1)+f(2)+f(3)+f(4)+f(5)=_0_______________.【考點(diǎn)分析
2025-06-16 08:18
【總結(jié)】第十二課時(shí)函數(shù)的單調(diào)性和奇偶性【學(xué)習(xí)導(dǎo)航】學(xué)習(xí)要求:1、熟練掌握函數(shù)單調(diào)性,并理解復(fù)合函數(shù)的單調(diào)性問(wèn)題。2、熟練掌握函數(shù)奇偶性及其應(yīng)用。3、學(xué)會(huì)對(duì)函數(shù)單調(diào)性,奇偶性的綜合應(yīng)用?!揪浞独恳?、利用函數(shù)單調(diào)性求函數(shù)最值例1、已知函數(shù)y=f(x)對(duì)任意x,y∈R均為f(x)+f(y)=f(x+y),且當(dāng)x
2024-12-05 11:37