freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)-易錯(cuò)易錯(cuò)壓軸勾股定理選擇題專題練習(xí)50(4)-wenkub.com

2025-04-01 22:51 本頁面
   

【正文】 .∵DE為AB中線且DE⊥AB,∴AD=BD=3cm ,∴DE=BD=,∴BE= cm.故選A.【點(diǎn)睛】本題考查了角平分線的性質(zhì),線段垂直平分線的性質(zhì),全等三角形的判定與性質(zhì),含30176?!唷螮BC+∠BCE=90176?!逜B//CD,∴∠ABD=45176。是解題的關(guān)鍵,再利用勾股定理求解.11.B解析:B【分析】首先由,得知動點(diǎn)P在與AB平行且與AB的距離為3的直線上,作點(diǎn)A關(guān)于直線的對稱點(diǎn)E,連接AE、BE,則BE的長就是所求的最短距離,然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【詳解】解:∵, 設(shè)點(diǎn)P到CD的距離為h,則點(diǎn)P到AB的距離為(4h),則,解得:h=1,∴點(diǎn)P到CD的距離1,到AB的距離為3,∴如下圖所示,動點(diǎn)P在與AB平行且與AB的距離為3的直線上,作點(diǎn)A關(guān)于直線的對稱點(diǎn)E,連接AE、BE,且兩點(diǎn)之間線段最短,∴PA+PB的最小值即為BE的長度,AE=6,AB=3,∠BAE=90176?!唷螰2DQ=∠DAE,在△DF2Q和△ADE中,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動到點(diǎn)A時(shí),點(diǎn)F運(yùn)動的路徑長為12,故選:D.【點(diǎn)睛】此題主要考查等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),解題關(guān)鍵是作好輔助線.6.C解析:C【分析】將容器側(cè)面展開,建立A關(guān)于上邊沿的對稱點(diǎn)A’,根據(jù)兩點(diǎn)之間線段最短可知A’B的長度為最短路徑15,構(gòu)造直角三角形,依據(jù)勾股定理可以求出底面周長的一半,乘以2即為所求.【詳解】解:如圖,將容器側(cè)面展開,作A關(guān)于EF的對稱點(diǎn),連接,則即為最短距離,根據(jù)題意:,.所以底面圓的周長為92=18cm.故選:C.【點(diǎn)睛】本題考查了平面展開——最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進(jìn)行計(jì)算是解題的關(guān)鍵.7.D解析:D【分析】先根據(jù)勾股定理求出梯子的長,進(jìn)而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=+=,在Rt△ABC中,∵∠ABC=90176。﹣30176。=90176。DP=DF,∴∠EDP+∠HDF=90176。 )A.3 B. C.5 D.30.勾股定理是“人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一”.我國對勾股定理的證明是由漢代的趙爽在注解《周髀算經(jīng)》時(shí)給出的,他用來證明勾股定理的圖案被稱為“趙爽弦圖”.2002年在北京召開的國際數(shù)學(xué)大會選它作為會徽.下列圖案中是“趙爽弦圖”的是( )A. B. C. D.【參考答案】***試卷處理標(biāo)記,請不要刪除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.A解析:A【分析】根據(jù)AC=13,AD=12,CD=5,可判斷出△ADC是直角三角形,在Rt△ADB中求出BD,繼而可得出BC的長度.【詳解】∵AC=13,AD=12,CD=5,∴,∴△ABD是直角三角形,AD⊥BC,由于點(diǎn)D在直線BC上,分兩種情況討論:當(dāng)點(diǎn)D在線段BC上時(shí),如圖所示,在Rt△ADB中,則;②當(dāng)點(diǎn)D在BC延長線上時(shí),如圖所示,在Rt△ADB中,則.故答案為:A.【點(diǎn)睛】本題考查勾股定理和逆定理,需要分類討論,掌握勾股定理和逆定理的應(yīng)用為解題關(guān)鍵.2.D解析:D【分析】先根據(jù)B(3m,4m+1),可知B在直線y=x+1上,所以當(dāng)BD⊥直線y=x+1時(shí),BD最小,找一等量關(guān)系列關(guān)于m的方程,作輔助線:過B作BH⊥x軸于H,則BH=4m+1,利用三角形相似得BH2=EH?FH,列等式求m的值,得BD的長即可.【詳解】解:如圖,∵點(diǎn)B(3m,4m+1),∴令,∴y=x+1,∴B在直線y=x+1上,∴當(dāng)BD⊥直線y=x+1時(shí),BD最小,過B作BH⊥x軸于H,則BH=4m+1,∵BE在直線y=x+1上,且點(diǎn)E在x軸上,∴E(?,0),G(0,1)∵F是AC的中點(diǎn)∵A(0,?2),點(diǎn)C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH?FH,∴(4m+1)2=(3m+)(3?3m)解得:m1=?(舍),m2=,∴B(,),∴BD=2BF=2=6,則對角線BD的最小值是6;故選:D.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),利用待定系數(shù)法求一次函數(shù)的解析式,三角形相似的判定,圓形與坐標(biāo)特點(diǎn),.3.D解析:D【解析】【分析】本題就是把圓柱的側(cè)面展開成矩形,“化曲面為平面”,用勾股定理解決..要求彩帶的長,需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長時(shí),借助于勾股定理.【詳解】如圖,由圖可知,彩帶從易拉罐底端的A處繞易拉罐4圈后到達(dá)頂端的B處,將易拉罐表面切開展開呈長方形,則螺旋線長為四個(gè)長方形并排后的長方形的對角線長,設(shè)彩帶最短長度為xcm,∵∵易拉罐底面周長是12cm,高是20cm,∴x2=(124)2+202∴x2=(124)2+202,所以彩帶最短是52cm.故選D.【點(diǎn)睛】本題考查了平面展開??最短路徑問題,圓柱的側(cè)面展開圖是一個(gè)矩形
點(diǎn)擊復(fù)制文檔內(nèi)容
語文相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1