freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

渭南市中考數(shù)學(xué)-易錯(cuò)易錯(cuò)壓軸勾股定理選擇題專題練習(xí)(1)-wenkub.com

2025-04-05 01:26 本頁(yè)面
   

【正文】 ∠CBM∠BMC,∠DOM=180176。AB=6,AC=8, ∴BC==10, 根據(jù)翻折的性質(zhì)可得A′B=AB=6,A′D=AD, ∴A′C=106=4. 設(shè)CD=x,則A′D=8x, 根據(jù)勾股定理可得x2(8x)2=42, 解得x=5, 故CD=5. 故答案為:B.【點(diǎn)睛】本題考察勾股定理和翻折問(wèn)題,根據(jù)勾股定理把求線段的長(zhǎng)的問(wèn)題轉(zhuǎn)化為方程問(wèn)題是解決本題的關(guān)鍵.23.A解析:A【分析】過(guò)C作CM⊥AB于M,交AD于P,過(guò)P作PQ⊥AC于Q,由角平分線的性質(zhì)得出PQ=PM,這時(shí)PC+PQ有最小值,為CM的長(zhǎng),然后利用勾股定理和等面積法求得CM的長(zhǎng)即可解答.【詳解】過(guò)C作CM⊥AB于M,交AD于P,過(guò)P作PQ⊥AC于Q,∵AD是∠BAC的平分線,∴PQ=PM,則PC+PQ=PC+PM=CM,即PC+PQ有最小值,為CM的長(zhǎng),∵在Rt△ABC中,∠ACB=90176。故選B.【點(diǎn)睛】本題主要考查了勾股定理的逆定理,如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.16.B解析:B【分析】根據(jù)勾股定理逆定理對(duì)每個(gè)選項(xiàng)一一判斷即可.【詳解】A、∵72+82≠102,∴△ABC不是直角三角形;B、∵52+42=()2,∴△ABC是直角三角形;C、∵22+()2≠()2,∴△ABC不是直角三角形;D、∵32+42≠62,∴△ABC不是直角三角形;故選:B.【點(diǎn)睛】本題主要考查勾股定理逆定理,熟記定理是解題關(guān)鍵.17.C解析:C【分析】根據(jù)勾股定理的逆定理解答即可.【詳解】A、∵,∴該選項(xiàng)的三條線段不能構(gòu)成直角三角形;B、∵,∴該選項(xiàng)的三條線段不能構(gòu)成直角三角形;C、∵,∴該選項(xiàng)的三條線段能構(gòu)成直角三角形;D、∵,∴該選項(xiàng)的三條線段不能構(gòu)成直角三角形;故選:C.【點(diǎn)睛】此題考查勾股定理的逆定理,掌握勾股定理的逆定理的計(jì)算法則及正確計(jì)算是解題的關(guān)鍵.18.D解析:D【解析】試題解析:當(dāng)3和5都是直角邊時(shí),第三邊長(zhǎng)為:=;當(dāng)5是斜邊長(zhǎng)時(shí),第三邊長(zhǎng)為:=4.故選D.19.C解析:C【分析】設(shè)AB=x,則BC=9-x,根據(jù)三角形兩邊之和大于第三邊,得到x的取值范圍,再利用分類討論思想,根據(jù)勾股定理列方程,計(jì)算解答.【詳解】解:∵在△ABC中,AC=AM=3,設(shè)AB=x,BC=9-x,由三角形兩邊之和大于第三邊得:,解得3<x<6,①AC為斜邊,則32=x2+(9-x)2,即x2-9x+36=0,方程無(wú)解,即AC為斜邊不成立,②若AB為斜邊,則x2=(9-x)2+32,解得x=5,滿足3<x<6,③若BC為斜邊,則(9-x)2=32+x2,解得x=4,滿足3<x<6,∴x=5或x=4;故選C.【點(diǎn)睛】本題考查三角形的三邊關(guān)系,勾股定理等,分類討論和方程思想是解答的關(guān)鍵.20.B解析:B【分析】過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,過(guò)點(diǎn)E作EQ⊥AC于點(diǎn)Q,EQ交AD于點(diǎn)P,連接CP,此時(shí)PC+PQ=EQ是最小值,根據(jù)勾股定理可求出AB的長(zhǎng)度,再根據(jù)EQ⊥AC、∠ACB=90176。∵DE垂直平分AB,∴AD=BD,在Rt△BCD中, ,∴,解得CD=,故選:C.【點(diǎn)睛】此題考查勾股定理及其逆定理,線段垂直平分線的性質(zhì),題中證得△ABC是直角三角形,且∠C=90176。AD⊥OM,∴△OAD是等腰直角三角形,∠OAD=45176?!螦BC∠ABE=60176?!唷鰽B’B是等邊三角形,∴∠B’=∠B’AB=60176。CD⊥BD,∴BD=CD,設(shè)BD=x,救援艇到達(dá)C處所用的時(shí)間為t,∵tan∠CAD=,AD=AB+BD,∴,得x=20(海里),∴BC=BD=20(海里),∴t= = (小時(shí)),故選C.【點(diǎn)睛】本題考查特殊角三角函數(shù),正確添加輔助線、熟練掌握特殊角的三角函數(shù)值是解題關(guān)鍵.5.C解析:C【分析】如圖1或圖2所示,分類討論,利用勾股定理可得結(jié)論.【詳解】當(dāng)如圖1所示時(shí),AB=2,BC=3,∴AC=;當(dāng)如圖2所示時(shí),AB=1,BC=6,∴AC=;故選C.【點(diǎn)睛】本題主要考查圖形的拼接,數(shù)形結(jié)合,分類討論是解答此題的關(guān)鍵.6.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考慮通過(guò)作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.【詳解】解:∵正方形是軸對(duì)稱圖形,點(diǎn)B與點(diǎn)D是關(guān)于直線AC為對(duì)稱軸的對(duì)稱點(diǎn),∴連接BN,BD,則直線AC即為BD的垂直平分線,∴BN=ND∴DN+MN=BN+MN連接BM交AC于點(diǎn)P,∵點(diǎn) N為AC上的動(dòng)點(diǎn),由三角形兩邊和大于第三邊,知當(dāng)點(diǎn)N運(yùn)動(dòng)到點(diǎn)P時(shí),BN+MN=BP+PM=BM,BN+MN的最小值為BM的長(zhǎng)度,∵四邊形ABCD為正方形,∴BC=CD=8,CM=8?2=6,BCM=90176。設(shè)BD=x則CD=BD=x,BC=x,由∠CAD=30176。=150176?!唷鰾PE為等邊三角形,∴PE=PB=4,∠BPE=60176。則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60176。AB的中垂線交AC于D,P是BD的中點(diǎn),若BC=4,AC=8,則S△PBC為(  )A.3 B. C.4 D.29.在直角三角形中,兩直角邊長(zhǎng)及斜邊上的高分別為,則下列關(guān)系式成立的是( )A. B. C. D.30.勾股定理是“人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一”.我國(guó)對(duì)勾股定理的證明是由漢代的趙爽在注解《周髀算經(jīng)》時(shí)給出的,他用來(lái)證明勾股定理的圖案被稱為“趙爽弦圖”.2002年在北京召開(kāi)的國(guó)際數(shù)學(xué)大會(huì)選它作為會(huì)徽.下列圖案中是“趙爽弦圖”的是(
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1