freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)(平行四邊形提高練習(xí)題)壓軸題訓(xùn)練附答案解析-wenkub.com

2025-03-31 22:29 本頁面
   

【正文】 +∠CER,∴∠PBR=∠CER=176。﹣176。矛盾,∴當(dāng)點E在線段DC上時,△PEC不可能是等腰三角形.②若點E在線段DC的延長線上,如圖4.若△PEC是等腰三角形,∵∠PCE=135176?!唷螾EC>90176?!唷螧OP=∠PFE.在△BOP和△PFE中, ∴△BOP≌△PFE(AAS),∴BO=PF.∵四邊形ABCD是正方形,∴OB=OC,∠BOC=90176。﹣∠GPE=∠EPH.在△PGB和△PHE中,∴△PGB≌△PHE(ASA),∴PB=PE.②連接BD,如圖2.∵四邊形ABCD是正方形,∴∠BOP=90176。EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴.(3)△GFC的面積不能等于2.說明一:∵若S△GFC=2,則12-a=2,∴a=10.此時,在△BEF中,.在△AHE中,∴AH>AD,即點H已經(jīng)不在邊AD上,故不可能有S△GFC=2.說明二:△GFC的面積不能等于2.∵點H在AD上,∴菱形邊EH的最大值為,∴BF的最大值為.又∵函數(shù)S△GFC=12-a的值隨著a的增大而減小,∴S△GFC的最小值為.又∵,∴△GFC的面積不能等于2.14.如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC的頂點A在x軸的正半軸上,OA=4,OC=2,點D、E、F、G分別為邊OA、AB、BC、CO的中點,連結(jié)DE、EF、FG、GD.(1)若點C在y軸的正半軸上,當(dāng)點B的坐標(biāo)為(2,4)時,判斷四邊形DEFG的形狀,并說明理由.(2)若點C在第二象限運(yùn)動,且四邊形DEFG為菱形時,求點四邊形OABC對角線OB長度的取值范圍.(3)若在點C的運(yùn)動過程中,四邊形DEFG始終為正方形,當(dāng)點C從X軸負(fù)半軸經(jīng)過Y軸正半軸,運(yùn)動至X軸正半軸時,直接寫出點B的運(yùn)動路徑長.【答案】(1)正方形(2)(3)2π【解析】分析:(1)連接OB,AC,說明OB⊥AC,OB=AC,可得四邊形DEFG是正方形.(2)由四邊形DEFG是菱形,可得OB=AC,當(dāng)點C在y軸上時,AC=,當(dāng)點C在x軸上時,AC=6, 故可得結(jié)論;(3)根據(jù)題意計算弧長即可.詳解:(1)正方形,如圖1,證明連接OB,AC,說明OB⊥AC,OB=AC,可得四邊形DEFG是正方形.(2)如圖2,由四邊形DEFG是菱形,可得OB=AC,當(dāng)點C在y軸上時,AC=,當(dāng)點C在x軸上時,AC=6, ∴ ;(3)2π.如圖3,當(dāng)四邊形DEFG是正方形時,OB⊥AC,且OB=AC,構(gòu)造△OBE≌△ACO,可得B點在以E(0,4)為圓心,2為半徑的圓上運(yùn)動.所以當(dāng)C點從x軸負(fù)半軸到正半軸運(yùn)動時,B點的運(yùn)動路徑為2 .圖1 圖2 圖3點睛:本題主要考查了正方形的判定,.15.已知邊長為1的正方形ABCD中, P是對角線AC上的一個動點(與點A、C不重合),過點P作PE⊥PB ,PE交射線DC于點E,過點E作EF⊥AC,垂足為點F.(1)當(dāng)點E落在線段CD上時(如圖),①求證:PB=PE;②在點P的運(yùn)動過程中,PF的長度是否發(fā)生變化?若不變,試求出這個不變的值,若變化,試說明理由;(2)當(dāng)點E落在線段DC的延長線上時,在備用圖上畫出符合要求的大致圖形,并判斷上述(1)中的結(jié)論是否仍然成立(只需寫出結(jié)論,不需要證明);(3)在點P的運(yùn)動過程中,△PEC能否為等腰三角形?如果能,試求出AP的長,如果不能,試說明理由.【答案】(1)①證明見解析;②點PP在運(yùn)動過程中,PF的長度不變,值為;(2)畫圖見解析,成立 ;(3)能,1.【解析】分析:(1)①過點P作PG⊥BC于G,過點P作PH⊥DC于H,如圖1.要證PB=PE,只需證到△PGB≌△PHE即可;②連接BD,如圖2.易證△BOP≌△PFE,則有BO=PF,只需求出BO的長即可.(2)根據(jù)條件即可畫出符合要求的圖形,同理可得(1)中的結(jié)論仍然成立.(3)可分點E在線段DC上和點E在線段DC的延長線上兩種情況討論,通過計算就可求出符合要求的AP的長.詳解:(1)①證明:過點P作PG⊥BC于G,過點P作PH⊥DC于H,如圖1.∵四邊形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45176。EH=EF,∴∠AEH+∠BEF=90176。∠MAN=45176。+∠CAN=∠BAN+∠ANC=180176?!唷螧AM=∠CAN,在△ABM與△ACN中, ,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60176。.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為:.【點睛】本題考查了折疊的性質(zhì)和矩形性質(zhì)、勾股定理等知識點,能熟記折疊的性質(zhì)是解答此題的關(guān)鍵.11.(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為  ??;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.【答案】(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】分析:(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60176。∴∠BB39。即∠AEF=90176。即可得到AE⊥EF;(2)連接BB′,通過折疊,可知∠EBB′=∠EB′B,由E是BC的中點,可得EB′=EC,∠ECB′=∠EB′C,從而可證△BB′C為直角三角形,在Rt△AOB和Rt△BOE中,可將OB,BB′的長求出,在Rt△BB′C中,根據(jù)勾股定理可將B′C的值求出.【詳解】(1)由折線
點擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1